Open Access Open Access  Restricted Access Subscription Access

Dynamics of air–sea carbon dioxide fluxes and their trends in the global context


Affiliations
1 Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
2 Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039,, India
3 Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
 

This article reviews the dynamics of CO2 fluxes in the global scenario. Most of the available techniques for sea-surface CO2 partial-pressure estimation are regional models that depend on the key regulating parameters of partial pressures. Global-scenario of fluxes reveals a contrasting trend, indicating subpolar- and polar-waters dominated by physical forcings in winter, releasing CO2 whereas a biological drawdown of atmospheric CO2 in summer. In the tropical oceans, thermal-regulation weakens biological forcing leading to influx in winter and outflux in summer. The Atlantic Ocean acts as an intense sink (–815 to –1295 mmol Cm–2 yr–1); the strong source in the Pacific-equatorial belt is balan­ced by temperate sinks. The Indian Ocean as a whole acts as a sink (–8.41  × 1015 mmol C yr–1) whereas the northwestern sub-basin acts as a source (2.04  × 1015 mmol C yr–1). The net global ocean uptake is 50  × 1015 mmol C yr–1 where the physical- and biological-forcings along with seasonality play crucial roles in the flux direction

Keywords

Carbon dioxide fluxes, earth system, global scenario, ocean–atmosphere interface, seasonal variability
User
Notifications
Font Size

  • Chester, R., Marine Geochemistry, Blackwell Science Ltd, Oxford, UK, 2000, 2nd edn, p. 506.
  • Velasco, E. and Roth, M., Cities as net sources of CO2: review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass, 2010, 4(9), 1238– 1259; 10.1111/j.1749-8198.2010.00384.x.
  • Feely, R. A., Sabine, C. L., Takahashi, T. and Wanninkhof, R., Uptake and storage of carbon dioxide in the ocean: the global CO2 survey. Oceanography, 2001, 14(4), 18–32.
  • Zeebe, R. E., History of sea water carbonate chemistry, atmospheric CO2 and ocean acidification. Annu. Rev. Earth Planet. Sci., 2012, 40, 141–165; doi:10.1146/annurev-earth-042711-105521.
  • Fletcher, S. E. M. et al., Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem. Cycles, 2007, 21, GB1010, 19; doi:10.1029/ 2006GB002751.
  • DOE, Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water, Version 2, United States Department of Energy (DOE), ORNL/CDIAC-74, 1994.
  • Buesseler, M., Bowles, M. and Joyce, K., US JGOFS Brochure, US JGOFS Planning and Data Management Office, Wooda Whole, Massachusetts, USA, 2013.
  • Caldera, K. and Wickett, M. E., Anthropogenic carbon and ocean pH. Nature Brief Commun., 2003, 425, 365.
  • Takahashi, T. et al., Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 2002, 49, 1601–1622.
  • Ono, T., Saino, T., Kurita, N. and Sasaki, K., Basin-scale extrapolation of shipboard pCO2 data by using satellite SST and Chl a. Int. J. Remote Sensing, 2004, 25(19), 3803–3815.
  • Landschutzer, P., Gruber, M. and Bakker, D. C. E., Decadal variations and trends of the global ocean carbon sink. Global Biogeochem. Cycles, 2016, 30, 1396–1417; https://doi.org/10.1002/ 2015GB005359.
  • Padhy, P. C. et al., Estimation of partial pressure of carbon dioxide and air–sea fluxes in Hooghly estuary based on in situ and satellite observations. J. Indian Soc. Remote Sensing, 2016, 44(1), 135–143; doi:10.1007/s12524-015-0459-z.
  • Millero, F., Lee, K. and Roche, M., Distribution of alkalinity in the surface oceans of the major oceans. Mar. Chem., 1998, 60, 111–130.
  • Goes, J. I., Saino, T., Oaku, H., Ishizaka, J., Wong, C. S. and Nojiri, Y., Basin scale estimates of sea surface nitrate and new production from remotely sensed sea surface temperature and chlorophyll. Geophys. Res. Lett., 2000, 27, 1263–1266.
  • Lee, K., Wanninkhof, R., Feely, R. A., Millero, F. J. and Peng, T. H., Global relationship of total inorganic carbon with temperature and nitrate in surface sea water. Global Biogeochem. Cycles, 2000, 14, 979–994.
  • Sarma, V. V. S. S. et al., Basin-scale pCO2 distribution using satellite sea surface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer. Global Biogeochem. Cycles, 2006, 20, GB3005; doi:10.1029/2005GB002594.
  • Zhu, Y., Shag, S., Zhai, W. and Dai, M., Satellite-derived surface water pCO2 and air–sea CO2 fluxes in the northern South China Sea in summer. Prog. Nat. Sci., 2009, 19, 775–779.
  • Zui, T., Bangyong, B., Ziwei1, L. and Xiaofeng, Y., Satellite observations of the partial pressure of carbon dioxide in the surface water of the Huanghai Sea and the Bohai Sea. Acta Oceanol. Sin., 2012, 31(3), 67–73; doi:10.1007/s13131-012-0207-y.
  • Liu, T. W. and Xie, X., Ocean surface carbon dioxide fugacity observed from space. JPL Publication 14–15, National Aeronautics and Space Administration, Jet Propulsion Laboratory California Institute of Technology Pasadena, California, USA, 2014, p. 18.
  • Jang, E., Im, J., Park, G. and Park, Y., Estimation of fugacity of carbon dioxide in the East Sea using in situ measurements and Geostationary Ocean Color Imager satellite data. Remote Sensing, 2017, 9(821), 23; doi:10.3390/rs9080821.
  • Stephens, M. P., Samuels, G., Olson, D. B., Fine, R. A. and Takahashi, T., Sea–air flux of CO2 in the North Pacific using shipboard and satellite data. J. Geophys. Res., 1995, 100(C7), 13571– 13583.
  • Cosca, C. E., Feely, R. A., Boutin, J., Etcheto, J., McPhaden, M. J., Chavez, F. P. and Strutton, P. G., Seasonal and interannual CO2 fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2–SST relationships. J. Geophys. Res., 2003, 108(C8), 3278; doi:10.1029/2000JC000677.
  • Takamura, T. R., Inoue, H. Y., Midorikawa, T., Ishii, M. and Nojiri, Y., Seasonal and inter-annual variations in pCO2 sea and air–sea CO2 fluxes in mid-latitudes of the western and eastern North Pacific during 1999–2006. J. Meteorol. Soc. Jpn, 2010, 88(6), 883–898; doi:10.2151/jmsj.2010-602.
  • Dixit, A., Lekshmi, K., Bharti, R. and Mahanta, C., Basin scale estimation of partial pressure of carbon dioxide in case 1 waters of Bay of Bengal. In International Geoscience and Remote Sensing Symposium, Velencia, Spain, 23–27 July 2018.
  • Takahashi, T., Olaffson, J., Goddard, J. D., Chipman, D. W. and Sutherland, S. C., Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochem. Cycles, 1993, 7(4), 843–878.
  • Da Vila, M. G., Casiano, J. M. S. and Da Vila, E. F. G., Interannual variability of the upper ocean carbon cycle in the northeast Atlantic Ocean. Geophys. Res. Lett., 2007, 34, L07608; doi:10.1029/2006GL028145.
  • Körtzinger, A. and Duinker, J. C., Strong CO2 emissions from the Arabian Sea during south-west monsoon. Geophys. Res. Lett., 1997, 24(14), 1763–1766.
  • Goet, C., Millero, F. J., OÕSullivan, D. W., Eischeid!, G., McCue, S. J. and Bellerby, R. G. J., Temporal variations of pCO2 in surface seawater of the Arabian Sea in 1995. Deep-Sea Res. I, 1998, 45, 609–623.
  • Sarma, V. V. S. S., Kumar, M. D. and George, M. D., The central and eastern Arabian Sea as a perennial source of atmospheric carbon dioxide. Tellus B, 1998, 50, 179–184.
  • Sarma, V. V. S. S., Monthly variability in surface pCO2 and net air–sea CO2 flux in the Arabian Sea. J. Geophys. Res., 2003, 108(C8), 3255; doi:10.1029/2001JC001062.
  • Sarma, V. V. S. S. et al., Carbon dioxide emissions from Indian monsoonal estuaries. Geophys. Res. Lett., 2012, 39, L03602, 5; doi:10.1029/2011GL050709.
  • Sarma, V. V. S. S. et al., Sources and sinks of CO2 in the west coast of Bay of Bengal. Tellus B, 2012, 64, 10961; doi:10.3402/tellusb.v64i0.10961.
  • Valsala, V., Makyutov, S. and Murtugudde, R., A window for carbon uptake in the southern subtropical Indian Ocean. Geophys. Res. Lett., 2012, 39, 1–7; doi:10.1029/2012GL052857.
  • Sarma, V. V. S. S. et al., Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 2013, 10, 7035–7052; doi:10.5194/bg-10-7035-2013.
  • Valsala, V. and Maksyutov, S., Interannual variability of air–sea CO2 flux in the north Indian Ocean. Ocean Dyn., 2013, 63, 165–178; doi:10.1007/s10236-012-0588-7.
  • Preethi Latha, T. et al., Estimation of air–sea CO2 flux in the coastal waters of Visakhapatnam. J. Indian Soc. Remote Sensing, 2015, 43(3), 647–652.
  • Valsala, V. and Murtugudde, R., Mesoscale and intraseasonal air–sea CO2 exchanges in the Western Arabian Sea during boreal summer. Deep Sea Res. I, 2015, 103, 101–113; doi:10.1016/j.dsr.2015.06.001.
  • Shanthi, R., Poornima, D., Naveen, M., Thangaradjou, T., Choudhury, S. B., Rao, K. H. and Dadhwal, V. K., Air–sea CO2 flux pattern along the southern Bay of Bengal waters. Dyn. Atmos. Oceans, 2016, 76, 14–28.
  • Midorikawa, T., Umedaa, T., Hiraishia, N., Ogawaa, K., Nemotoa, K., Kuboa, N. and Masao, I., Estimation of seasonal net community production and air–sea CO2 flux based on the carbon budget above
  • the temperature minimum layer in the western subarctic North Pacific. Deep-Sea Res. I, 2002, 49, 339–362.
  • Feely, R. A., Wanninkhof, R., McGillis, W., Carr, M. E. and Cosca, C. E., Effects of wind speed and gas exchange parameterizations on the air–sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res., 2004, 109, C08S03, 10; doi:10.1029/2003JC0-01896.
  • Feely, R. A., Takahashi, T., Wanninkhof, R., McPhaden, M. J., Cosca, C. E., Sutherland, S. C. and Carr, M., Decadal variability of the air–sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res., 2006, 111, C08S90, 1–16; doi:10.1029/2005JC003129.
  • Valsala, V., Maksyutov, S., Telszewski, M., Nakaoka, S., Nojiri, Y., Ikeda, M. and Murtugudde, R., Climate impacts on the structures of the North Pacific air–sea CO2 flux variability. Biogeosciences, 2012, 9, 477–492; doi:10.5194/bg-9-477-2012.
  • Valsala, V., Roxy, M., Ashok, K. and Murtugudde, R., Spatiotemporal characteristics of seasonal to multidecadal variability of pCO2 and air–sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res.: Oceans, 2014, 119, 8987–9012; doi:10.1002/ 2014JC010212.
  • Sutton, A. J., Wanninkhof, R., Sabine, C. L., Feely, R. A., Cronin, M. F. and Weller, R. A., Variability and trends in surface sea water pCO2 and CO2 flux in the Pacific Ocean. Geophys. Res. Lett., 2017, 44, 5627–5636; doi:10.1002/2017GL073814.
  • Olsen, A., Bellerby, R. G. J., Johannessen, T., Omar, A. M. and Skjelvan, I., Interannual variability in the wintertime air–sea flux of carbon dioxide in the northern North Atlantic, 1981–2001. Deep-Sea Res. I, 2003, 50, 1323–1338.
  • Bates, N. R., Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J. Geophys. Res., 2007, 112, 26; doi:10.1029/2006JC003759.
  • Oliveiraa, R. R., Pezzia, L. P., Souzab, R. B., Santinia, M. F., Cunhac, L. C. and Pachecod, F. S., First measurements of the ocean–atmosphere CO2 fluxes at the Cabo Frio upwelling system region, Southwestern Atlantic Ocean. Continent. Shelf Res., 2019, 181, 135–142; https://doi.org/10.1016/j.csr.2019.05.008.
  • Orselli, I. B. M., Kerra, R., Azevedoa, J. L. L., Galdinoa, F., Araujoe, M. and Garcia, C. A. E., The sea–air CO2 net fluxes in the South Atlantic Ocean and the role played by Agulhas eddies. Prog. Oceanogr., 2019, 170, 40–52; https://doi.org/10.1016/j.pocean.2018.10.006.
  • Takahashi, T., Freely, R. A., Weiss, R. F., Wanninkhof, R. H., Chipman, D. W., Sutherland, S. C. and Takahashi, T. T., Global air–sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference, Colloquium Paper. Proc. Natl. Acad. Sci. USA, 1997, 94, 8292–8299.
  • Zhai, W., Dai, M., Cai, W., Wang, Y. and Hong, H., The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn. Mar. Chem., 2005, 96, 86–97.
  • McNeil, B. I., Metzl, N., Key, R. M., Matear, R. J. and Corbiere, A., An empirical estimate of the Southern Ocean air–sea CO2 flux. Global Biogeochem. Cycles, 2007, 21, GB3011; doi:10.1029/ 2007GB002991.
  • Gray, A. R. et al., Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett., 2018, 45(17), 9049–9057; https://doi.org/10.1029/2018GL078013.
  • Mongwe, N. P., Vichi, M. and Monteiro, M. S., The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 earth system models. Biogeosciences, 2018, 15, 2851–2872; https://doi.org/10.5194/bg-15-2851-2018.
  • Murtugudde, R., Seager, R. and Thoppil, P., Arabian Sea response to monsoon variations. Paleoceanography, 2007, 22, PA4217; doi:10.1029/2007PA001467.
  • Valsala, V., Different spreading of Somali and Arabian coastal upwelled waters in the northern Indian Ocean: a case study. J. Phys. Oceanogr., 2009, 65, 803–816; doi:https://doi.org/10.1007/ s10872-009-0067-z.
  • Sreeush, M. G., Saran, R., Valsala, V., Pentakotta, S., Prasad, K. V. S. R. and Murtugudde, R., Variability, trend and controlling factors of ocean acidification over Western Arabian Sea upwelling region. Mar. Chem., 2019, 29, 14–24; https://doi.org/10.1016/ j.marchem.2018.12.002.
  • Vinayachandran, P. N., Murty, V. S. N. and Babu, V. R., Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J. Geophys. Res., 2002, 107(C12), 8018, 19.1–19.9; doi:10.1029/2001JC000831.
  • Murtugudde, R. and Busalacchi, A. J., Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 1999, 12, 2300–2326; doi:10.1175/1520-0442.
  • Vinayachandran, P. N. and Mathew, S., Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones. Geophys. Res. Lett., 2003, 30(11), 1572, 26.1–26.4; doi:10.1029/2002GL016717.
  • Vinayachandran, P. N., Chauhan, P., Mohan, M. and Nayak, S., Biological response of the sea around Sri Lanka to summer monsoon. Geophys. Res. Lett., 2004, 31, L0102, 1–4; doi:10.1029/2003GL018533.
  • Vinayachandran, P. N., McCreary Jr, J. P., Hood, R. R. and Kohler, K. E., A numerical investigation of the phytoplankton bloom in the Bay of Bengal during northeast monsoon. J. Geophys. Res., 2005, 110, C12001, 1–14; doi:10.029/2005JC002966.
  • Susanto, R., Gordon, A. L. and Zheng, Q., Upwelling along the coasts of Java and Sumatra and its relation to ENSO. J. Geophys. Res. Lett., 2001, 28, 1599–1602; doi:10.1029/2000GL011844.
  • Chakraborty, K., Valsala, V., Gupta, G. V. M. and Sarma, V. V. S. S., Dominant biological control over upwelling on pCO2 in sea east of Sri Lanka. J. Geophys. Res.: Biogeosci., 123, 3250–3261; doi:10.1029/2018JG004446.
  • McCreary, J. et al., Biophysical processes in the Indian Ocean. Geophys. Monogr. Ser., 2009, 185, 9–32; https://doi.org/10.1029/2008GM000768.

Abstract Views: 165

PDF Views: 77




  • Dynamics of air–sea carbon dioxide fluxes and their trends in the global context

Abstract Views: 165  |  PDF Views: 77

Authors

K. Lekshmi
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
Rishikesh Bharti
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039,, India
Chandan Mahanta
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India

Abstract


This article reviews the dynamics of CO2 fluxes in the global scenario. Most of the available techniques for sea-surface CO2 partial-pressure estimation are regional models that depend on the key regulating parameters of partial pressures. Global-scenario of fluxes reveals a contrasting trend, indicating subpolar- and polar-waters dominated by physical forcings in winter, releasing CO2 whereas a biological drawdown of atmospheric CO2 in summer. In the tropical oceans, thermal-regulation weakens biological forcing leading to influx in winter and outflux in summer. The Atlantic Ocean acts as an intense sink (–815 to –1295 mmol Cm–2 yr–1); the strong source in the Pacific-equatorial belt is balan­ced by temperate sinks. The Indian Ocean as a whole acts as a sink (–8.41  × 1015 mmol C yr–1) whereas the northwestern sub-basin acts as a source (2.04  × 1015 mmol C yr–1). The net global ocean uptake is 50  × 1015 mmol C yr–1 where the physical- and biological-forcings along with seasonality play crucial roles in the flux direction

Keywords


Carbon dioxide fluxes, earth system, global scenario, ocean–atmosphere interface, seasonal variability

References





DOI: https://doi.org/10.18520/cs%2Fv121%2Fi5%2F626-640