Open Access Open Access  Restricted Access Subscription Access

Regional disparity in summer monsoon precipitation in the Indian subcontinent during Northgrippian to Meghalayan transition


Affiliations
1 Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun 248 001, India
2 Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721 302, India
3 School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Argul 752 050, India
 

The present study reveals distinct spatial variability of summer monsoon precipitation in Indian subcontinent during Northgrippian to Meghalayan transition. Protracted dry phase lasting ~1000 yrs was observed ~4.2 ka BP in southern and northwestern India whereas 200–300 yrs event occurred in northeastern parts. Strong El Niño conditions beginning ~4.3 kyr BP were associated with the millennial long dryness in western parts but its influence was limited in the eastern region. Cross-verified, high-resolution records from different geographic regions of India are still required to ascertain if regional differences occurred in span and magnitude during Northgrippian to Meghalayan transition.

Keywords

Indian summer monsoon, Indus civilization, Late Holocene, 4.2 ka event, Meghalayan age
User
Notifications
Font Size

  • Banerji, U. S., Arulbalaji, P. and Padmalal, D., Holocene climate variability and Indian Summer Monsoon: an overview. The Holocene, 2020, 30(5), 744–773.
  • Misra, P., Tandon, S. K. and Sinha, R., Holocene climate records from lake sediments in India: Assessment of coherence across climate zones. Earth-Sci. Rev., 2019, 190, 370–397.
  • Gupta, A. K., Anderson, D. M. and Overpack, J. T., Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 2003, 421, 354– 357.
  • Dutt, S., Gupta, A. K., Clemens, S. C., Cheng, H., Singh, R. K., Kathayat, G. and Edwards, R. L., Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophys. Res. Lett., 2015, 42, 5526–5532.
  • Yadava, A., Braeuning, A., Singh, J. and Yadav, R. R., Boreal spring precipitation variability in the cold arid western Himalaya during the last millennium, regional linkages, and socio-economic implications. Quat. Sci. Rev., 2016, 144, 28–43.
  • Gupta, A. K., Dutt, S., Cheng, H. and Singh, R. K., Abrupt changes in Indian summer monsoon strength during the last ~900 years and their linkages to socio-economic conditions in the Indian subcontinent. Palaeogeor., Palaeoclimtol., Palaeoecol., 2019, 536, 109347.
  • Cullen, H. M., Demenocal, P. B., Hemming, S., Hemming, G., Brown, F. H., Guilderson, T. and Sirocko, F., Climate change and the collapse of Akkadian empire: Evidence from the deep sea. Geology, 2000, 28, 379–382.
  • Dixit, Y., Hodell, D. A. and Petrie, C. A., Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology, 2014, 42, 339–342.
  • Giesche, A., Staubwasser, M., Petrie, C. and Hodell, D., Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea. Clim. Past, 2019, 15, 73–90.
  • Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. S. and Yoshimura, K., An abrupt shift in the Indian monsoon 4000 year ago. In Climates, Landscapes, and Civilizations, AGU Geophysical Monograph Series, 2012, vol. 198, pp. 75–87.
  • Dutt, S., Gupta, A. K., Wünnemann, B. and Yan, D., A long arid interlude in the Indian summer monsoon during ~4,350 to 3,450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quat. Int., 2018, 482, 83–92.
  • Giosan, L. et al., Neoglacial climate anomalies and the Harappan metamorphosis. Clim. Past, 2018, 14, 1669–1686.
  • Staubwasser, M., Sirocko, F., Gischolar_maines, P. M. and Segl, M., Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett., 2003, 30, 1425.
  • Kotlia, B. S., Singh, A. K., Joshi, L. M. and Bisht, K., Precipitation variability over Northwest Himalaya from ~4.0 to 1.9 ka BP with likely impact on civilization in the foreland areas. J. Asian Earth Sci., 2017, 162, 148–159.
  • Dixit, Y. et al., Intensified summer monsoon and the urbanization of Indus civilization in northwest India. Sci. Rep., 2018, 8, 4225.
  • Parthasarathy, B., Kuma, K. R. and Munot, A. A., Homogeneous Indian monsoon rainfall: variability and prediction. Proc. Indian Acad. Sci.–Earth Planet. Sci., 1993, 102, 121–155.
  • Gadgil, S., The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 2003, 31, 429–467.
  • Thamban, M., Kawahata, H. and Rao, V. P., Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. J. Oceanograr., 2007, 63(6), 1009–1020.
  • Altabet, M. A., Higginson, M. J. and Murray, D. W., The effect of millennial-scale changes in Arabian sea denitrification on atmospheric CO2. Nature, 2002, 415(6868), 159.
  • Das, M., Singh, R. K., Gupta, A. K. and Bhaumik, A. K., Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? Palaeogeor., Palaeoclimatol., Palaeoecol., 2017, 483, 125–135.
  • Gupta, S. K. and Amin, B. S., Io/U ages of corals from Saurashtra coast. Mar. Geol., 1974, 16(5), M79–M83.
  • von Rad, U., Schaaf, M., Michels, K. H., Schulz, H., Berger, W. H. and Sirocko, F., A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quat. Res., 1999, 51(1), 39–53.
  • Arz, H. W., Lamy, F. and Pätzold, J., A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quat. Res., 2006, 66, 432–441.
  • Burdanowitz, N., Gaye, B., Hilbig, L., Lahajnar, N., Lückge, A., Rixen, T. and Emeis, K. C., Holocene monsoon and sea levelrelated changes of sedimentation in the northeastern Arabian Sea. Deep Sea Res. Part II: Top. Stud. Oceanogr., 2019, 166, 6–18.
  • Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M. and Duplessy, J. C., Century-scale events in monsoonal climate over the past 24,000 years. Nature, 1993, 364, 322–324.
  • Rashid, H., England, E., Thompson, L. and Polyak, L., Late glacial to Holocene Indian summer monsoon variability based upon sediment records taken from the Bay of Bengal. Terr. Atmos. Ocean Sci., 2011. 22(2), 2.
  • Rashid, H., Flower, B. P., Poore, R. Z. and Quinn, T. M., A ∼25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quat. Sci. Rev., 2007, 26, 2586–2597.
  • Achyuthan, H., Nagasundaram, M., Gourlan, A. T., Eastoe, C., Ahmad, S. M. and Padmakumari, V. M., Mid-Holocene Indian summer monsoon variability off the Andaman Islands, Bay of Bengal. Quat. Int., 2014, 349, 232–244.
  • Nagasundaram, M., Achyuthan, H. and Ahmad, S. M., Monsoonal changes inferred from the Middle to Late Holocene sediments off landfall island, North Andaman. Arab. J. Geosci., 2014, 7, 3513– 3523.
  • Ranasinghe, P. N., Ortiz, J. D., Moore, A. L., McAdoo, B., Wells, N., Siriwardana, C. H. E. R. and Wijesundara, D. T. D. S., MidLate Holocene coastal environmental changes in southeastern Sri Lanka: New evidence for sea level variations in southern Bay of Bengal. Quat. Int., 2013, 298, 20–36.
  • Zorzi, C., Goni, M. F. S., Anupama, K., Prasad, S., Hanquiez, V., Johnson, J. and Giosan, L., Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial–glacial transition. Quat. Sci. Rev., 2015, 125, 50–60.
  • Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E., Kumar, P. and Collett, T. S., Holocene aridification of India. Geophys. Res. Lett., 2012, 39(3), L03704.
  • Rajagopalan, G., Sukumar, R., Ramesh, R., Pant, R. K. and Rajagopalan, G., Late Quaternary vegetational and climatic changes from tropical peats in southern India – an extended record up to 40,000 years BP. Curr. Sci., 1997, 73(1), 60–63.
  • Sandeep, K. et al., A multi-proxy lake sediment record of Indian summer monsoon variability during the Holocene in southern India. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, 476, 1–14.
  • Basu, S., Anoop, A., Sanyal, P. and Singh, P., Lipid distribution in the lake Ennamangalam, south India: Indicators of organic matter sources and paleoclimatic history. Quat. Int., 2017, 443, 238–247.
  • Warrier, A. K., Shankar, R. and Sandeep, K., Sedimentological and carbonate data evidence for lake level variations during the past 3700 years from a southern Indian lake. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, 397, 52–60.
  • Chauhan, M. S. and Quamar, M. F., Pollen records of vegetation and inferred climate change in Southwestern Madhya Pradesh during the last ca. 3800 years. J. Geol. Soc. India, 2012, 80, 470–480.
  • Kumar, O., Devrani, R. and Ramanathan, A. L., Deciphering the past climate and monsoon variability from lake sediment archives of India: a review. J. Clim. Change, 2017, 3, 11–23.
  • Quamar, M. F. and Chauhan, M. S., Late Quaternary vegetation, climate as well as lake-level changes and human occupation from Nitaya area in Hoshangabad District, southwestern Madhya Pradesh (India), based on pollen evidence. Quat. Int., 2012, 263, 104– 113.
  • Prasad, S. et al., Prolonged monsoon droughts and links to IndoPacific warm pool: A Holocene record from Lonar Lake, central India. Earth Planet. Sci. Lett., 2014, 391, 171–182.
  • Kathayat, G. et al., Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Clim. Past, 2018, 14, 1869–1879.
  • Mehrotra, N., Shah, S. K., Basavaiah, N., Laskar, A. H. and Yadava, M. G., Resonance of the ‘4.2 ka event’ and terminations of global civilizations during the Holocene, in the palaeoclimate records around PT Tso Lake, Eastern Himalaya. Quat. Int., 2019, 507, 206–216.
  • Sharma, S., Joachimski, M. M., Tobschall, H. J., Singh, I. B., Sharma, C. and Chauhan, M. S., Correlative evidences of monsoon variability, vegetation change and human inhabitation in Sanai lake deposit: Ganga Plain, India. Curr. Sci., 2006, 90, 973– 978.
  • Trivedi, A., Chauhan, M. S. and Sharma, A., Late pleistoceneholocene vegetation and climate change in the central Ganga plain: A multiproxy study from Jalesar Tal, Unnao district, Uttar Pradesh. Curr. Sci., 2012, 103, 555–562.
  • Saxena, A., Prasad, V. and Singh, I. B., Holocene palaeoclimate reconstruction from the phytoliths of the lake-fill sequence of Ganga Plain. Curr. Sci., 2013, 104, 1054–1062.
  • Chauhan, M. S., Pokharia, A. K. and Srivastava, R. K., Late Quaternary vegetation history, climatic variability and human activity in the Central Ganga Plain, deduced by pollen proxy records from Karela Jheel, India. Quat. Int., 2015, 371, 144–156.
  • Wasson, R. J., Smith, G. I. and Agrawal, D. P., Late Quaternary sediments, minerals and inferred geochemical history of Didwana Lake, Thar Desert, India. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1984, 46, 345–372.
  • Enzel, Y. et al., High-resolution holocene environmental changes in the Thar Desert, Northwestern India. Science, 1999, 284, 125– 128.
  • Sarkar, A. et al., Oxygen isotope in archeological bioapatites from India: Implications to climate change and decline of Bronze Age Harappan civilization. Sci. Rep., 2016, 6, 26555.
  • Dave, A. K., Courty, M. A., Fitzsimmons, K. E. and Singhvi, A. K., Revisiting the contemporaneity of a mighty river and the Harappans: Archeological, stratigraphic and chronometric constraints. Quat. Geochron., 2019, 49, 230–235.
  • Nakamura, A. et al., Weak monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas. Quat. Int., 2016, 397, 349–359.
  • Kathayat, G. et al., The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv., 2017, 3, e1701296.
  • Demske, D., Tarasov, P. E., Leipe, C., Kotlia, B. S., Joshi, L. M. and Long, T., Record of vegetation, climate change, human impact and retting of hemp in Garhwal Himalaya (India) during the past 4600 years. The Holocene, 2016, 26, 1661–1675.
  • Phadtare, N. R., Sharp decrease in summer monsoon strength 4000–3500 cal yr BP in the Central Higher Himalaya of India based on pollen evidence from Alpine Peat. Quat. Res., 2000, 53, 122–129.
  • Srivastava, P. et al., 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene. Sci. Rep., 2017, 7(1), 14515.
  • Leipe, C., Demske, D., Tarasov, P. E. and HIMPAC project members, A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: Implications for palaeoclimatic and archaeological research. Quat. Int., 2014, 348, 93–112.
  • Mishra, P. K. et al., Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quat. Int., 2015, 371, 76–86.
  • Giosan, L. et al., Fluvial landscapes of the Harappan civilization. Proc. Natl. Acad. Sci. USA, 2012, 109, E1688–E1694.
  • Wünnemann, B. et al., Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quat. Sci. Rev., 2010, 29, 1138–1155.
  • Rawat, S., Gupta, A. K., Sangode, S. J., Srivastava, P. and Nainwal, H. C., Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat. Sci. Rev., 2015, 114, 167–181.
  • Basu, S., Sanyal, P., Sahoo, K., Chauhan, N., Sarkar, A. and Juyal, N., Variation in monsoonal rainfall sources (Arabian Sea and Bay of Bengal) during the late Quaternary: Implications for regional vegetation and fluvial systems. Palaeogeor., Palaeoclimatol., Palaeoecol., 2018, 491, 77–91.
  • Mishra, P. K. et al., Contrasting pattern of hydrological changes during the past two millennia from central and northern India: Regional climate difference or anthropogenic impact? Global Planet. Change, 2018, 161, 97–107.
  • Possehl, G. L., Climate and the eclipse of ancient cities of Indus. In Third Millennium BC Climate Changes and Old World Collapse (eds Dalfes, H. N., Kukla, G. and Weiss, H.), Springer, Heidelberg, 1997, pp. 193–243.
  • Dutt, S., Gupta, A. K., Singh, M., Jaglan, S., Saravanan, P., Balachandiran, P. and Singh, A., Climate variability and evolution of the Indus civilization. Quat. Int., 2019, 507, 15–23.
  • Rein, B., How do the 1982/83 and 1997/98 El Niños rank in a geological record from Peru? Quat. Int., 2007, 161, 56–66.
  • Bradley, R. and Bakke, J., Is there evidence for a 4.2 ka BP event in the northern North Atlantic region? Clim. Past, 2019, 15, 1665–1676.
  • Jalali, B., Sicre, M. A., Azuara, J., Pellichero, V. and Combourieu-Nebout, N., Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event. Clim. Past, 2019, 15, 701–711.
  • Toth, L. T. and Aronson, R. B., The 4.2 ka event, ENSO, and coral reef development. Clim. Past, 2019, 15, 105–119.
  • Perry, C. A. and Hsu, K. J., Geophysical, archaeological, and historical evidence support a solar-output model for climate change. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12433–12438.
  • Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. and Röhl, U., Southward migration of the Intertropical Convergence Zone through the Holocene. Science, 2001, 293, 1304–1308.
  • Bond, G. et al., Persistent solar influence on North Atlantic climate during the Holocene. Science, 2001, 294(5549), 2130–2136.
  • Stuiver, M. and Gischolar_maines, P. M., GISP2 oxygen isotope ratios. Quat. Res., 2000, 53(3), 277–284.
  • Steinhilber, F., Beer, J. and Fröhlich, C., Total solar irradiance during the Holocene. Geophys. Res. Lett., 2009, 36(19), L19704.
  • Mayewski, P. A. et al., Holocene climate variability. Quat. Res., 2004, 62(3), 243–255.
  • Abram, N. J., McGregor, H. V., Gagan, M. K., Hantoro, W. S. and Suwargadi, B. W., Oscillations in the southern extent of the IndoPacific Warm Pool during the mid-Holocene. Quat. Sci. Rev., 2009, 28, 2794–2803.
  • Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G. and Cane, M., Unraveling the mystery of Indian monsoon failure during El Niño. Science, 2006, 314, 115–119.
  • Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. and Matter, A., Holocene forcing of the Indian monsoon recorded in a Stalagmite from Southern Oman. Science, 2003, 300, 1737–1739.
  • Sinha, A. et al., Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat. Commun., 2015, 6, 6309.

Abstract Views: 183

PDF Views: 77




  • Regional disparity in summer monsoon precipitation in the Indian subcontinent during Northgrippian to Meghalayan transition

Abstract Views: 183  |  PDF Views: 77

Authors

Som Dutt
Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun 248 001, India
Anil K. Gupta
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721 302, India
Rahul Devrani
Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun 248 001, India
Ram R. Yadav
Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun 248 001, India
Raj K. Singh
School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Argul 752 050, India

Abstract


The present study reveals distinct spatial variability of summer monsoon precipitation in Indian subcontinent during Northgrippian to Meghalayan transition. Protracted dry phase lasting ~1000 yrs was observed ~4.2 ka BP in southern and northwestern India whereas 200–300 yrs event occurred in northeastern parts. Strong El Niño conditions beginning ~4.3 kyr BP were associated with the millennial long dryness in western parts but its influence was limited in the eastern region. Cross-verified, high-resolution records from different geographic regions of India are still required to ascertain if regional differences occurred in span and magnitude during Northgrippian to Meghalayan transition.

Keywords


Indian summer monsoon, Indus civilization, Late Holocene, 4.2 ka event, Meghalayan age

References





DOI: https://doi.org/10.18520/cs%2Fv120%2Fi9%2F1449-1457