Open Access Open Access  Restricted Access Subscription Access

Modelling-Based Approach of Analysing Diversion Impacts A Case Study of The Brahmaputra Basin


Affiliations
1 Department of Civil Engineering, Indian Institute of Technology, Guwahati 781 039, India
 

Water resources management of the transboundary Brahmaputra river basin is challenging due to limited hydro-climatic information beyond the national boundary. The present study uses soil and water assessment tool (SWAT) to evaluate the likely impact on hydrology, due to water diversion activity. Adopting several scenarios of water diversion, simulation results of the SWAT hydrological model show a significant impact on streamflow along the downstream of a hypothetical reservoir at the Indo-China border. The monthly discharge at ‘Bhomoraguri’ reduces up to 15.77% against only 10% withdrawal. Besides, diversion would lead to a change in sediment discharge of the Brahmaputra.

Keywords

Hydrological Model, River Basin, Streamflow, Water Diversion.
User
Notifications
Font Size

  • Heikman, S. K, Derry, L. A., Stedinger, J. R. and Duncan, C. C., A simple predictive tool for lower Brahmaputra River Basin monsoon flooding. Earth Interact., 2007, 11(21), 1.
  • Maheshwari, R. and Sarma, A. K., Streamflow forecasting for Brahmaputra River: a time series and neural network approach. M Tech Dissertation, Indian Institute of Technology Guwahati, 2005.
  • Wicaksono, A. and Kang, D., Nationwide simulation of water, energy, and food nexus: case study in Korea and Indonesia. J. Hydro Environ. Res., 2019, 22, 70–87.
  • Akhtar, M. P., Sharma, N. and Ojha, C. S. P., Braiding process and bank erosion in the Brahmaputra River. Int. J. Sediment. Res., 2011, 26, 431–444.
  • Apurv. T., Mehrotra, R., Sharma, A., Goyal, M. K. and Dutta, S., Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. J. Hydrol., 2015, 527, 281–291.
  • Ghosh, S. and Dutta, S., Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model. J. Earth Syst. Sci., 2012, 121(3), 637–657.
  • Gogoi, M. P., Gogoi, B., Hazarika, S. and Borgohain, P., GIS based study on fluvio-morphology of the river Brahmaputra in part of upper Assam, NE India. J. Frontline Res., 2012, 2, 114–121; ISSN: 2249-9903.
  • Goswami, D. C., Brahmaputra River, Assam, India: physiography, Basin denudation and channel aggradation. J. Water Resour. Res., 1985, 21(7), 959–978.
  • Sahoo, S. N. and Sreeja, P., Development of flood inundation maps and quantification of flood risk in an urban catchment of Brahmaputra River. ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A, 2015, A4015001.
  • Sarma, J. N., Fluvial process and morphology of the Brahmaputra River in Assam, India. J. Geomorphol., 2005, 70, 226–256; doi:10.1016/j.geomorph.2005.02.007.
  • Aktar, N. et al., Climate change impacts on water availability in the Brahmaputra basin. In Fifth International Conference on Water and Flood Management, 2015; www.researchgate.net/publication/ 281610569.
  • Chen, L. et al., Influence of rainfall data scarcity on non-point source pollution prediction: implications for physically based models. J. Hydrol., 2018, 562, 1–16.
  • Ploeg, M. J. V. D., Haldorsen, S., Leijnse, A. and Heim, M., Subpermafrost groundwater systems: dealing with virtual reality while having virtually no data. J. Hydrol., 2012, 475, 42–52; doi: 10.1016/j.jhydrol.2012.08.046.
  • Tabari, H., Kisi, O., Ezani, A. and Talaee, P. H., SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol., 2012, 444, 78–89.
  • Valdivieso, F. O. and Sendra, J. B., Semi-distributed hydrological model with scarce information: application to a large South American Binational Basin. J. Hydrol. Eng., 2014, 19(5), 1006–1014.
  • Thu, H. N. and Wehn, U., Data sharing in international transboundary contexts: the Vietnamese perspective on data sharing in the Lower Mekong Basin. J. Hydrol., 2016, 536, 351–364.
  • Biemans, H. et al., Impact of reservoirs on river discharge and irrigation water supply during the 20th century. J. Water Resour. Res., 2011, 47, W03509; doi:10.1029/2009WR008929.
  • Li, B. S., Zhou, P. J., Wang, X. Y. and Zhu, L., Opportunities and eco-environmental influence of cascade hydropower development and water diversion projects in Hanjiang River Basin. J. Geol. Soc. India, 2013, 82, 692; https://doi.org/10.1007/s12594-013 0207-3.
  • Zhu, X., Zhang, C., Yin, J., Zhou, H. and Jiang, Y., Optimization of water diversion based on reservoir operating rules: analysis of the Biliu River Reservoir, China. J. Hydrol. Eng., 2014, 19(2), 411–421.
  • Talukdar, S. and Pal, S., Impact of dam on inundation regime of flood plain wetland of Punarbhaba River Basin of Barind tract of Indo-Bangladesh. J. Int. Soil Water Conserv. Res., 2017, 5(2), 109–121; https://doi.org/10.1016/j.iswcr.2017.05.003.
  • Wang, W. et al., Dam construction in Lancang‐Mekong River Basin could mitigate future flood risk from warming‐induced intensified rainfall. J. Geophys. Res. Lett., 2017; https://doi.org/10.1002/2017GL075037.
  • Zhang, Y., Xia, J., Liang, T. and Shao Q., Impact of water projects on River flow regimes and water quality in Huai River Basin. J. Water Resour. Manage., 2010, 24, 889–908; https://doi.org/ 10.1007/s11269-009-9477-3.
  • Gassman, P., Reyes, M., Green, C. and Arnold, J. G., The soil and water assessment tool: historical development, applications, and future research directions. J. ASABE, 2007, 50(4), 1211–1250.
  • Daggupati, P., Yen, H., White, M. J., Srinivasan, R., Arnold, J. G., Keitzer, C. S. and Sowa, S. P., Impact of model development, calibration, and validation decisions on hydrological simulations in West Lake, Erie Basin. J. Hydrol. Process., 2015, doi:10.1002/hyp.10536.
  • Rosenberg, N. J., Epstein, D. J., Wang, D., Vail, L., Srinivasan, R. and Arnold, J. G., Possible impacts of global warming on the hydrology of the Ogallala aquifer region. J Climate Change, 1999, 42(4), 677–692.
  • Srinivasan, M. S., Gerald‐Marchant, P., Veith, T. L., Gburek, W. J. and Steenhuis, T. S., Watershed‐scale modeling of critical source areas of runoff generation and phosphorus transport. J. Am. Water Resour. Assoc., 2005, 41(2), 361–375.
  • Zhang, X., Srinivasan, R., Zhao, K. and Van Liew, M., Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. J. Hydrol. Process, 2008; doi:10.1002/hyp.7152.
  • Abbaspour, K. C. et al., Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol., 2007, 333, 413–430.
  • Bekiaris, I. G., Panagopoulos, I. N. and Mimikou, M. A., Application of the SWAT (soil and water assessment tool) model in the Ronnea catchment of Sweden. Global NEST J., 2005, 7(3), 252–257.
  • Fohrer, N., Haverkamp, S., Eckhardt, K. and Frede, H. G., Hydrologic response to land use changes on the catchment scale. J. Phys. Chem. Earth (B), 2001, 26(7–8), 577–582.
  • Grizzetti, B., Bouraoui, F., Granlund, K., Rekolainen, S. and Bidoglio, G., Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecol. Model., 2003, 169, 25–38; doi:10.1016/S0304-3800(03)00198-4.
  • Arnold, J. G. et al., SWAT: model use, calibration, and validation. J. ASABE, 2012, ISSN 2151-0032.
  • Borah, D. K. and Bera, M., Watershed‐scale hydrologic and nonpoint‐ source pollution models: review of applications. Trans. ASAE, 2004, 47(3), 789–803.
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R., Large-area hydrologic modeling and assessment: Part I. Model development. J. Am. Water Resour. Assoc., 1998, 34(1), 73–89.

Abstract Views: 205

PDF Views: 64




  • Modelling-Based Approach of Analysing Diversion Impacts A Case Study of The Brahmaputra Basin

Abstract Views: 205  |  PDF Views: 64

Authors

Pulendra Dutta
Department of Civil Engineering, Indian Institute of Technology, Guwahati 781 039, India
Arup Kumar Sarma
Department of Civil Engineering, Indian Institute of Technology, Guwahati 781 039, India

Abstract


Water resources management of the transboundary Brahmaputra river basin is challenging due to limited hydro-climatic information beyond the national boundary. The present study uses soil and water assessment tool (SWAT) to evaluate the likely impact on hydrology, due to water diversion activity. Adopting several scenarios of water diversion, simulation results of the SWAT hydrological model show a significant impact on streamflow along the downstream of a hypothetical reservoir at the Indo-China border. The monthly discharge at ‘Bhomoraguri’ reduces up to 15.77% against only 10% withdrawal. Besides, diversion would lead to a change in sediment discharge of the Brahmaputra.

Keywords


Hydrological Model, River Basin, Streamflow, Water Diversion.

References





DOI: https://doi.org/10.18520/cs%2Fv119%2Fi6%2F1010-1018