Open Access Open Access  Restricted Access Subscription Access

Addressing Past Monsoon Variability from Speleothems


Affiliations
1 Geoscience Department, National Taiwan University, Taipei, Taiwan, Province of China
2 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
 

Numerous observations indicate that speleothems can record signatures of the past climate variability. Systematics of stable isotopes and trace elements in speleothems and current methods of dating are discussed. δ 18O in Indian speleothems is presently being used as a monsoon proxy. Several records from Indian karst locations are available, many of these cover recent several millennia and some extend back to ~280 ka. Salient features of monsoon variability reconstructed so far from Indian speleothems is briefly discussed. Some of the δ 18O records show presence of non-persistent periodic changes suggesting controls of subtle variations in solar output and internal changes in the climate system.

Keywords

Indian Monsoon, Palaeoclimate, Periodic Analysis, Speleothem.
User
Notifications
Font Size

  • Gadgil, S., The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 2003, 31(1), 429–467.
  • Braconnot, P. et al., Evaluation of climate models using paleoclimate data. Nature Climate Change, 2012, 417–424; doi:10.1038/ NCLIMATE1456.
  • Polanski, S., Fallah, F., Prasad, S. and Cubasch, U., Simulations of the Indian monsoon an dits variability during the last millennium. Clim. Past. Discuss, 2013, 9, 703–740.
  • Yadava, M. G. and Ramesh, R., Speleothems – useful proxies for past monsoon rainfall. J. Sci. India. Res. (India), 1999, 58, 339– 348.
  • Yadava, M. G. and Ramesh, R., Stable oxygen and carbon isotope variations as monsoon proxies: a comparative study of speleothems from four different locations in India. J. Geol. Soc. India, 2006, 68, 461–475.
  • Ramesh, R., Tiwari, M., Chakraborty, S., Managave, S. R., Yadava, M. G. and Sinha, D. K., Retrieval of south Asian monsoon variation during the Holocene from natural climatic archives. Curr. Sci., 2010, 99, 1770–1786.
  • Laskar, A. H., Raghav, S., Yadava, M. G., Jani, R. A., Narayana, A. C. and Ramesh, R., Potential of stable carbon and oxygen isotope variations of speleothems from Andaman Islands, India, for paleomonsoon reconstruction. J. Geol. Res., 2011, 1–7; doi:10.1155/2011/272971.
  • Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J. and Asmerom, Y., A 4 k year stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem. Geophys. Geosystem., 2013, 14, 3555–3566; doi:10.1002/ggge.20203.
  • Lone, M. A., Ahmad, S. M., Dung, N. C., Shen, C. C., Raza, W. and Kumar, A., Speleothem based 1000-year high resolution record of Indian monsoon variability during the last deglaciation. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, 395, 1–8; doi:10.1016/j.palaeo.2013.12.010.
  • Band, S., Yadava, M. G., Lone, M. A., Shen, C. C., Sree, K. and Ramesh, R., High-resolution mid-Holocene Indian Summer Monsoon recorded in a stalagmite from the Kotumsar Cave, Central India. Quat. Int., 2018, 479, 19–24.
  • Managave, S. R., Model evaluation of the coherence of a common source water oxygen isotopic signal recorded by tree-ring cellulose and speleothem calcite. Geochem., Geophys., Geosyst., 2014, 15(4), 905–922.
  • Baker, A., Smart, P. L., Edwards, R. L. and Richards, D. A. Annual growth banding in a cave stalagmite. Nature, 1993, 364(6437), 518.
  • Edwards, R. L., Chen, J. H. and Wasserburg, G. J., 238U234U230Th232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett., 1987, 81(2–3), 175–192.
  • Cheng, H. et al., The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 2016, 534(7609), 640.
  • Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C. and Dorale, J. A., A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294(5550), 2345–2348.
  • Wang, X. et al., Wet periods in northeastern Brazil over the past 210 k year linked to distant climate anomalies. Nature, 2004, 432(7018), 740.
  • Yuan, D. et al., Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 2004, 304(5670), 575–578.
  • Cheng, H. et al., A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology, 2006, 34(3), 217–220.
  • Lachniet, M. S., Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev., 2009, 28(5–6), 412– 432.
  • Gautam, P. K., Narayana, A. C., Band, S. T., Yadava, M. G., Ramesh, R., Wu, C. C. and Shen, C. C., High-resolution reconstruction of Indian summer monsoon during the Bølling-Allerød from a central Indian stalagmite. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2019, 514, 567–576.
  • Spötl, C. and Mattey, D., Stable isotope microsampling of speleothems for palaeoenvironmental studies: a comparison of microdrill, micromill and laser ablation techniques. Chem. Geol., 2006, 235(1–2), 48–58.
  • Treble, P. C. et al., High resolution secondary ionisation mass spectrometry (SIMS) δ 18O analyses of Hulu Cave speleothem at the time of Heinrich Event 1. Chem. Geol., 2007, 238(3–4), 197– 212.
  • Moore, G. W., Speleothem – a new cave term. Natl. Speleological Soc. News, 1952, 10(6), 2.
  • Schwarcz, H., Geochronology and isotopic geochemistry of speleothems. Handbook of Environmental Isotope Geochemistry, 1986, vol. 2, pp. 271–303.
  • Broecker, W. S., Olson, E. A. and Orr, P. C., Radiocarbon measurements and annual rings in cave formations. Nature, 1960, 185, 93–94.
  • Sasowsky, I. D. and Mylroie, J., Studies of cave sediments: physical and chemical records of paleoclimate, Springer Science and Business Media, 2007.
  • O’Neil, J. R., Clayton, R. N. and Mayeda, T. K., Oxygen isotope fractionation in divalent metal carbonates, Technical Report, University of Chicago, 1969.
  • Gascoyne, M., Palaeoclimate determination from cave calcite deposits. Quat. Sci. Rev., 1992, 11(6), 609–632.
  • Repinski, P., Holmgren, K., Lauritzen, S. and Lee-Thorp, J., A late holocene climate record from a stalagmite, cold air cave, northern province, South Africa. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1999, 150(3), 269–277.
  • Yadava, M. and Ramesh, R., Monsoon reconstruction from radiocarbon dated tropical Indian speleothems. The Holocene, 2005, 15(1), 48–59.
  • Baker, A. J., Sodeman, H., Baldini, J. U. L., Breitenbach, S. F. M., Johnson, K. R., Hunen, J. B. P. and Zhang, P., Seasonality of westerly moisture transport in the East Asian Summer Monsoon and its implications for interpreting precipitation δ 18O. J. Geophys. Res. Atmos., 2015, 120, 5850–5862.
  • Breitenbach, S. F. M., Adkins, J. F., Meyer, H., Marwan, N., Kumar, K. K. and Haug, G. H., Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. EPSL, 2010, 292, 212–220; doi:10.1016/j.epsl.2010.01.038.
  • Yadava, M. G., Ramesh, R., Narayana, A. C. and Jani, R. A., Stable oxygen and hydrogen isotopes in drip and rain waters at the Belum Cave, Andhra Pradesh, India. J. Climate Change, 2016, 2(1), 113–122; doi:10.3233/JCC-160012.
  • Yadava, M. G., Ramesh, R. and Pandarinath, K., A positive ‘amount effect’ in the Sahyadri (Western Ghats) rainfall. Curr. Sci., 2007, 93(2), 560–564.
  • Clark, I. D. and Fritz, P., Environmental Isotopes in Hydrogeology, CRC Press, 1997.
  • Sinha, A. et al., Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød. Geology, 2005, 33, 813– 816; doi:10.1130/G21498.1.
  • Chakraborty, S., Sinha, N., Chattopadhyay, Sengupta, S., Mohan, P. M. and Datye, A., Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal. Sci. Rep., 2016, 6, 19555; doi:10.1038/srep19555.
  • Yadava, M. G., Stable isotope systematics in cave calcites: Implications to past climatic changes in tropical India, Ph D thesis (unpublished), Devi Ahilya Vishwavidyalaya, Indore, 2002, p. 175.
  • Allison, G., The relationship between 18O and deuterium in water in sand columns undergoing evaporation. J. Hydrol., 1982, 55(1–4), 163–169.
  • Hendy, C., The isotopic geochemistry of speleothems I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim. Cosmochim. Acta, 1971, 35(8), 801–824; doi:10.1016/0016-7037(71)90127-X.
  • Dorale, J. E. and Liu, Z., Limitations of Hendy test criteria for judging the paleocliamte suitability from speleothems and the need for replication. J. Cave Karst Stud., 2009, 1, 73–80.
  • Craig, H. and Keeling, C. D., The effects of atmospheric no 2 on the measured isotopic composition of atmospheric CO2. Geochim. Cosmochim. Acta, 1963, 27(5), 549–551.
  • Badeck, F.-W., Tcherkez, G., Nogues, S., Piel, C. and Ghashghaie, J., Postphotosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Commun. Mass Spectrometry, 2005, 19(11), 1381–1391.
  • Bender, M. M., Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon, 1968, 10(2), 468–472.
  • Dulinski, M. and Rozanski, K., Formation of 13C/12C isotope ratios in speleothems: a semi-dynamic model. Radiocarbon, 1990, 32, 7–16.
  • Mickler, P. J., Stern, L. A. and Banner, J. L., Large kinetic isotope effects in modern speleothems. Geol. Soc. Am. Bull., 2006, 118, 65–81.
  • Yadava, M. G., Dayal, A. M. and Ramesh, R., Effects of dead carbon fraction and the mineralogy of four spleothems on their carbon and oxygen isotopic variations. Gond. Geol. Mag., 2014, 29, 53–59.
  • Given, R. K. and Wilkinson, B. H., Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J. Sed. Petrol., 1985, 55, 109–119.
  • Tarutani, T., Clayton, R. N. and Malyeda, T. K., The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between carbonate and water. Gechim. Cosmochim. Acta, 1969, 33, 987–996.
  • Rubinson, M. and Clayton, R. N., Carbon-13 fractionation between aragonite and calcite. Geochim. Cosmochim. Acta, 1969, 33, 997–1002.
  • Fairchild, I. J. et al., Controls on trace element (sr-mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem. Geol., 2000, 166(3), 255–269.
  • Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D. and McDermott, F., Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev., 2006, 75(1–4), 105–153.
  • Morse, J. W. and Bender, M. L., Partition coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem. Geol., 1990, 82, 265–277.
  • Gascoyne, M., Trace-element partition coefficients in the calcitewater system and their paleoclimatic significance in cave studies. J. Hydrol., 1983, 61, 213–222.
  • Tesoriero, A. and Pankow, F., Solid solution partitioning of Sr2+, Ba2+ and Cd2+ to calcite. Geochim. Cosmochim. Acta, 1996, 60, 1053–1063.
  • Yadava, M. G. and Ramesh, R., Past rainfall and trace element variations in a tropical speleothem from India. Mausam, 2001, 52, 307–316.
  • Wassenburg, J. A. et al., Determination of aragonite trace element distribution coefficients from speleothem calcite–aragonite transitions. Geochim. Cosmochim. Acta, 2016, 190, 347–367.
  • Johnson, K. R., Hu, C. Y., Belshaw, N. S. and Henderson, G. M., Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett., 2006, 244, 394– 407.
  • McMillan, E. A., Fairchild, I. J., Frisia, S., Borsato, A. and McDermott, F., Annual trace element cycles in calcite–aragonite speleothems: evidence of drought in the western mediterranean 1200–1100 year. J. Quat. Sci., 2005, 20(5), 423–433.
  • Holland, H. D., Kirsipu, T. V., Huebner, J. S. and Oxburgh, U. M., On some aspects of the chemical evolution of cave waters. J. Geol., 1964, 36–67.
  • Frisia, S., Borsato, A., Fairchaild, I. J., McDermott, F. and Selmo, E. M., Aragonite-calcite relationships in speleothems (Grotte De Clamouse, France): environment, fabrics, and carbonate geochemistry. J. Sediment. Res., 2002, 72(5), 687–699.
  • Yadava, M., Ramesh, R. and Pant, G., Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. The Holocene, 2004, 14(4), 517–524; doi:10.1191/ 0959683604hl728rp.
  • Faure, G., Principles of Isotope Geology, John Wiley, 1977.
  • Scholz, D. and Hoffmann, D., 230Th/U-dating of fossil corals and speleothems. Quat. Sci. J., 2008, 57, 52.
  • Joshi, L. M. et al., Reconstruction of Indian monsoon precipitation variability between 4.0 and 1.6 ka BP using speleothem δ 18O records from the Central Lesser Himalaya, India. Arab. J. Geosci., 2017, 10, 356; doi:10.1007/s12517-017-3141-7.
  • Kutschera, W., Accelerator mass spectrometry: state of the art and perspectives. Adv. Phys., 2016, X, 62–65.
  • Genty, D. and Massault, M., Bomb 14C recorded in laminated speleoethems: calculation of dead carbon proportion. Radiocarbon, 1997, 39(1), 133–148.
  • Eggins, S. M. et al., A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem. Geol., 1997, 134(4), 311–326.
  • Zhou, H., Chi, B., Lawrence, M., Zhao, J., Yan, J., Greig, A. and Feng, Y., High-resolution and precisely dated record of weathering and hydrological dynamics recorded by manganese and rareearth elements in a stalagmite from Central China. Quat. Res., 2008, 69(3), 438–446.
  • Kotlia, B. S. et al., Stalagmite inferred high resolution climatic changes through Pleistocene–Holocene transition in northwest Indian Himalaya. J. Earth Sci. Clim. Change, 2016, 7; doi: 10.4172/2157-7617.1000338.
  • Sinha, A. et al., Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nature Commun., 2015, 6; doi:10.1038/ncomms7309.
  • Kathayat, G. et al., The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv., 2017, 3, e1701296; doi:10.1126/sciadv.1701296.73. Kathayat, G. et al., Indian monsoon variability on millennialorbital timescales. Sci. Rep., 2016, 6; doi:10.1038/srep24374.
  • Kotlia, B. S., Singh, A. K., Zhao, J.-X., Duan, W., Tan, M., Sharma, A. K. and Raza, W., Stalagmite based high resolution precipitation variability for past four centuries in the Indian Central Himalaya: Chulerasim cave re-visited and data re-interpretation. Quat. Int., 2017, 444, 35–43; doi:10.1016/j.quaint.2016.04.007.
  • Sanwal, J., Kotlia, B. S., Rajendran, C., Ahmad, S. M., Rajendran, K. and Sandiford, M., Climatic variability in Central Indian Himalaya during the last ∼1800 years: evidence from a high resolution speleothem record. Quat. Int., 2013, 304, 183–192; doi:10.1016/ j.quaint.2013.03.029.
  • Liang, F. et al., Panigarh cave stalagmite evidence of climate change in the Indian Central Himalaya since AD 1256: monsoon breaks and winter southern jet depressions. Quat. Sci. Rev., 2015, 124, 145–161; doi:10.1016/j.quascirev.2015.07.017.
  • Kotlia, B. S., Singh, A. K., Joshi, L. M. and Dhaila, B. S., Precipitation variability in the Indian Central Himalaya during last ca. 4000 years inferred from a speleothem record: impact of Indian Summer Monsoon (ISM) and Westerlies. Quat. Int., 2015, 371, 244–253; doi:10.1016/j.quaint.2014.10.066.
  • Rajendran, C. P., Jaishri Sanwal, Morell, K., Sandiford, M., Rajendran, K. and Kotlia, B. S., Stalagmite growth perturbations from the Kumaun Himalaya as potential earthquake recorders. J. Seismol., 2016, 20, 579–594.
  • Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H. and Biswas, J., The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. GRL, 2011, 38; doi:10.1029/2011GL047713.
  • Dutt, S., Gupta, A. K., Clemens, S. C., Cheng, H., Singh, R. K., Kathayat, G. and Edwards, R. L., Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP, 2015, pp. 1–7; doi:10.1002/2015GL064015.
  • Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. and Yoshimura, K., An abrupt shift in the Indian monsoon 4000 years ago. Geophys. Monogr. Ser., 2012, 198, 75–88.
  • Middleton, G. D., Bang or whimper. Science, 2018, 361, 1204– 1205; doi:10.1126/science.aau8834.
  • Kathayat, G. et al., Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Clim. Past, 2018, 14, 1869–1879; https://doi.org/10.5194/cp-14-18692018.
  • Huguet, C. et al., Temperature and Monsoon Tango in a Tropical Stalagmite: last glacial-interglacial climate dynamics. Sci Rep., 2018, 8(1), 5386; doi:10.1038/s41598-018-23606-w.
  • Sinha, A. et al., A 900-year (600 to 1500 AD) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys. Res. Lett., 2007, 34(16).
  • Yadava, M. G., Sarswat, K. S., Singh, I. B. and Ramesh, R., Evidences of the early human occupation in the limestone caves of Bastar, Chhattisgarh. Curr. Sci., 2007, 92(6), 820–823.
  • Raza, W., Ahmad, S. M., Lone, M. A., Shen, C.-C., Sarma, D. S. and Kumar, A., Indian summer monsoon variability in southern India during the last deglaciation: evidence from a high resolution stalagmite δ 18O record. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, 485, 476–485; doi:10.1016/j.palaeo.2017.07.003.
  • Allu, N. C. et al., Stalagmite 18O variations in southern India reveal divergent trends of Indian Summer Monsoon and East Asian Summer Monsoon during the last interglacial. Quat. Int., 2015; doi:10.1016/j.quaint.2014.12.014.
  • Sinha, N., Gandhi, N., Chakraborty, S., Krishnan, R., Yadava, M. G. and Ramesh, R., Abrupt climate change at ~2800 yr BP evidenced by high-resolution oxygen isotopic record of a Stalagmite from peninsular India. The Holocene, 2018; doi.org/10.1177/ 0959683618788647.
  • Yadava, M. G. and Ramesh, R., Significant longer-term periodicities in the proxy record of the Indian monsoon rainfall. New Astronomy, 2007, 12, 544–555.
  • Kaushal, N. et al., The Indian Summer Monsoon from a Speleothem δ 18O perspective – a review. Quaternary, 2018, 1, 29.
  • Berkelhammer, M., Sinha, A., MUdelsee, M., Cheng, H., Edwards, R. L. and Cannariato, K., Persistent multidecadal power of the Indian Monsoon. Earth Planet. Sci. Lett., 2010, 290, 166–172.
  • Vasiliev, S. S. and Dergachev, The ~2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years. Ann. Geophys., 2002, 20, 115–120.
  • Torrence, C. and Compo, G. P., A practical guide to wavelet analysis. Bull. Am. Met. Soc., 1998, 79(1), 61–78.

Abstract Views: 238

PDF Views: 73




  • Addressing Past Monsoon Variability from Speleothems

Abstract Views: 238  |  PDF Views: 73

Authors

Shraddha Band
Geoscience Department, National Taiwan University, Taipei, Taiwan, Province of China
M. G. Yadava
Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

Abstract


Numerous observations indicate that speleothems can record signatures of the past climate variability. Systematics of stable isotopes and trace elements in speleothems and current methods of dating are discussed. δ 18O in Indian speleothems is presently being used as a monsoon proxy. Several records from Indian karst locations are available, many of these cover recent several millennia and some extend back to ~280 ka. Salient features of monsoon variability reconstructed so far from Indian speleothems is briefly discussed. Some of the δ 18O records show presence of non-persistent periodic changes suggesting controls of subtle variations in solar output and internal changes in the climate system.

Keywords


Indian Monsoon, Palaeoclimate, Periodic Analysis, Speleothem.

References





DOI: https://doi.org/10.18520/cs%2Fv119%2Fi2%2F244-254