Open Access Open Access  Restricted Access Subscription Access

Rice Husk SiO2 (NPs) Supported-BO3H3:A Highly Active, Solvent-Free and Recyclable Catalyst to Dihydropyrimidin-2(1H)ones- (Thiones) and Coumarin-3-Carboxylic Acid Synthesis


Affiliations
1 Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591 156, India
2 NMR Research Centre, Indian Institute of Science, Bengaluru 560 012, India
 

3,4-Dihydropyrimidin-2(1H)ones(thiones) (DHPM) and coumarin-3-carboxylic acid are obtained in excellent to good yield by employing green catalyst under sol-vent-free condition. The condensation of substituted arylaldehyde, 1,3-diketoester and urea/thiourea in the presence of green catalyst after 1 h of stirring at 50°C resulted in DHPM. The reaction of substituted o-hydroxybenzaldehyde with Meldrum’s acid in the presence of catalyst under sonication for a few minutes gave coumarin-3-carboxylic acid. Here, we have used Lewis acid catalyst RHA–SiO2(NPs)–BO3H3 derived from the agro-waste of rice husk, a heteroge-neous catalyst for important organic scaffold synthe-sis. The reaction required low catalyst loading (1.2 mg) to achieve a target product under solvent-free condition. A series of other derivatives of heterogene-ous catalysts synthesized are RHA–SiO2, RHA–SiO2(NPs), RHA–SiO2–BO3H3. We examined their catalytic activity in the synthesis of DHPM and cou-marin-3-carboxylic acid. Only the reaction catalysed by RHA–SiO2(NPs)–BO3H3 gave excellent yield of the product. The final isolated pure product has been fully characterized by various spectroscopic methods and confirmed.

Keywords

Agro-Waste, Coumarin-3-Carboxylic Acid, Dihydropyrimidin-2(1H)ones(Thiones), Heterogeneous Catalyst, Rice Husk.
User
Notifications
Font Size

  • Ranu, B. C., Hajra, A. and Dey, S. S., A practical and green approach towards synthesis of dihydropyrimidinones without any solvent or catalyst. Org. Process Res. Dev., 2002, 6, 817–818.
  • Kamali, M., Shockravi, A., Doost, M. S. and Hooshmand, S. E., One-pot, solvent-free synthesis via Biginelli reaction: catalyst-free and new recyclable catalysts. Cogent Chem., 2015, 1, 1081667.
  • Kadre, T., Jetti, S. R., Bhatewara, A., Paliwal, P. and Shubha, J., Green protocol for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones using TBAB as a catalyst and solvent free condition under microwave irradiation. Arch. Appl. Sci. Res., 2012, 4, 988–993.
  • Nazeruddin, G. M. and Shaikh, Y. I., Tamarind juice catalyzed one pot synthesis of dihydropyrimidinone and thione under ultra-sound irradiation at ambient conditions: a green approach. Pharm. Sin., 2014, 5, 64–68.
  • Himaj, M. and Karigar, D. P., Green technique-solvent free syn-thesis and its advantages. IJRAP, 2011, 2, 1079–1086.
  • Sarrafi, Y., Pazokie, F., Azizi, S. N., Alimohammadi, K., Mehrasbi, E. C. and Chiani, E., Mesoporous SBA-15 nanoparti-cles: an efficient and eco-friendly catalyst for one-potsynthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Curr. Chem. Lett., 2014, 3, 97–102.
  • Heidarizadeh, F., Nezhad, E. R. and Sajjadifar, S., Novel acidic ionic liquid as a catalyst and solvent for green synthesis of dihy-dropyrimidine derivatives. Sci. Iran. C, 2013, 20, 561–565.
  • Roschat, W., Siritanon, T., Yoosuk, B. and Promarak, V., Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production. Energ. Convers. Manage., 2016, 19, 453–462.
  • Cendrowski, K., Sikora, P., Zielinska, B., Horszczaruk, E. and Mijowska, E., Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Appl. Surf. Sci., 2017, 407, 391–397.
  • Park, S. et al., Thermal stability-enhanced tetraethylene-pentamine/silica adsorbents for high performance CO2 capture. Indust. Eng. Chem. Res., 2018, 57, 4632–4639.
  • Takahashi, R., Sato, S., Sodesawa, T., Kawakita, M. and Ogura, K., High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J. Phys. Chem. B, 2000, 104, 12184–12191.
  • Tsyganenko, A. A., Storozheva, E. N., Manoilova, O. V., Lesage, T., Daturi, M. and Lavalley, J. C., Bronsted acidity of silica silanol groups induced by adsorption of acids. Catal. Lett., 2000, 70, 159–163.
  • Climent, M. J., Corma, A. and Iborra, S., Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2012, 2, 16–58.
  • Kaur, M., Sharma, S., Bedi, P. M. S., Silica supported Brӧnsted acids as catalyst in organic transformations: a comprehensive review. Chin. J. Catal., 2015, 36, 520–549.
  • Shukla, P. K., Verma, A. and Pathak, P., A prospective study on silica based heterogeneous catalyst as modern organic synthesis tool. Arch. Appl. Sci. Res., 2014, 6, 18–25.
  • Kalapathy, U., Proctor, A. and Shultz, J., A simple method for production of pure silica from rice hull ash. Bioresour. Technol., 2000, 73, 257–262.
  • Karade, H. N., Sathe, M. and Kaushik, M. P., Synthesis of 4-aryl substituted 3,4-dihydropyrimidinones using silica-chloride under solvent free conditions. Molecules, 2007, 12, 1341–1351.
  • Buyukserin, F., Altuntas, S. and Aslim, B., Fabrication and modification of composite silica nano test tubes for targeted drug delivery. RSC Adv., 2014, 4, 23535.
  • Li, C. P., Sun, X. H., Wong, N. B., Lee, C. S., Lee, S. T. and Teo, B. K., Silicon nanowires wrapped with Au film. J. Phys. Chem. B, 2002, 106, 6980–6984.
  • Battegazzore, D., Bocchini, S., Jenny, A. and Frache, A., Rice husk as bio-source of silica preparation and characterization of PLA-silica bio-composites. RSC Adv., 2014, 4, 54703–54712.
  • Anupam, A. K., Kumar, P. and Ransinchung, G. D., Use of vari-ous agricultural and industrial waste materials in road construc-tion. Procedia – Soc. Beha. Sci., 2013, 104, 264–273.
  • Laura, D.-E. and Porcar, M., Rice straw management: the big waste. Biofuels, Bioprod. Bioref., 2010, 4, 154–159.
  • Omidvar, M., Karimi, K. and Mohammadi, M., Enhanced ethanol and glucosamine production from rice husk by NAOH pretreat-ment and fermentation by fungus mucorhiemalis. Biofuel Res. J., 2016, 11, 475–481.
  • Shackley, S. et al., Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: context, chemical properties, environmental and health and safety issues. Energ. Policy, 2012, 42, 1–722.
  • Tipayarom, D. and Thi, Kim, O. N., Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region. Sci. Asia, 2007, 33, 339–345.
  • Firth, J. D., Craven, P. G. E., Lilburn, M., Axel, P., Marsden, S. P. and Nelson, A., Biosynthesis-inspired approach to over twenty diverse natural product-like scaffolds. Chem. Commun., 2016, 52, 9837.
  • Paulina, H.-K., John, A. J., Joanna, S. and Piotr, B., Recent studies of the synthesis, functionalization, optoelectronic proper-ties and applications of dibenzophospholes. RSC Adv., 2017, 7, 9194.
  • Nilsson, B. L. and Overman, L. E., Concise synthesis of guani-dine-containing heterocycles using the Biginelli reaction. J. Org. Chem., 2006, 71, 7706–7714.
  • Dussenne, C., Delaunay, T., Wiatz, V., Wyart, H., Suisse, I. and Sauthier, M., Synthesis of isosorbide: an overview of challenging reactions. Green Chem., 2017, 19, 5332.
  • Phukan, M., Borah, K. J. and Borah, R., Henry reaction in envi-ronmentally benign methods using imidazole as catalyst. Green Chem. Lett. Rev., 2009, 2, 249–253.
  • Kakuchi, R., Yoshida, S., Sasaki, T., Kanoh, S. and Maeda, K., Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym. Chem., 2018, 9, 2109–2115.
  • Weber, L., The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9, 2085–2093.
  • Soeta, T., Kojima, Y., Ukaji, Y. and Inomata, K., O-silylative Passerini reaction: a new one-pot synthesis of r-siloxyamides. Org. Lett., 2010, 12, 4341–4343.
  • Yang, K., Liu, L.-J., and Liu, J.-T., The synthesis and Strecker reaction of 2-chlorotetrafluoroethanesulfinyl ketimines. J. Org. Chem., 2014, 79, 3215–3220.
  • Zhang, Q., Zhang, Y., Zhao, Y., Yang, B., Fu, C., Wei, Y. and Tao, L., Multicomponent polymerization system combining Hantzschreaction and reversible addition–fragmentation chain transfer to efficiently synthesize well-defined poly(1,4-dihydropyridine)s. ACS Macro. Lett., 2015, 4, 128–132.
  • Jain, S. L., Joseph, J. K., Singhal, S. and Sain, B., Metallophthal-ocyanines (MPCs) as efficient heterogeneous catalysts for Bigi-nelli condensation: application and comparison in catalytic activity of different MPCs for one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. J. Mol. Catal. A, 2007, 268, 134–138.
  • Rajagopal, D., Narayanan, R. and Swaminathan, S., Enantioselec-tive solvent-free Robinson annulation reactions. Proc. Indian Acad. Sci. (Chem. Sci.), 2001, 113, 197–213.
  • Tryfon, Z.-T., Chandgude, A. L. and Domling, A., Multicompo-nent reactions, union of MCRs and beyond. Chem. Rec., 2015, 15, 981–996.
  • Tron, G. C., Minassi, A. and Appendino, G., PietroBiginelli: the man behind the reaction. Eur. J. Org. Chem. (Spl), 2011, 5541– 5550.
  • Jadhav, V. B., Holla, H. V., Tekale, S. U. and Pawar, R. P., Bio-active dihydropyrimidines: an overview. Chem. Sin., 2012, 3, 1213–1228.
  • Thombal, R. S. and Jadhav, V. H., Efficient one pot synthesis of 1,4-dihydropyridines under solvent free conditions using carbonaceous solid acid catalyst. J. Chem. Appl. Biochem., 2015, 2, 111.
  • Franklin, A. S., Ly, S. K., Mackin, G. H., Overman, L. E. and Shaka, A. J., Application of the tethered biginellireaction fore-nantioselective synthesis of batzelladine alkaloids. Absolute con-figuration of the tricyclic guanidine portion of batzelladine B. J. Org. Chem., 1999, 64, 1512–1519.
  • Russowsky, D. et al., Synthesis and differential antiproliferative-activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastroland oxygenated analogues. Bioorg. Chem., 2006, 34, 173–182.
  • Duguay, D. R. et al., Synthesis, characterization and antifungal testing of 3,4-dihydropyrimidin-2(1H)-(thio)ones containing boronic acids and boronate esters. Cent. Eur. J. Chem., 2008, 6, 562–568.
  • Dondoni, A., Massi, A., Sabbatini, S. and Bertolasi, V., Three-component Biginelli cyclocondensation reaction using C-glycosylated substrates. Preparation of a collection of dihydropy-rimidinone glycoconjugates and the synthesis of C-glycosylated monastrol analogues. J. Org. Chem., 2002, 67, 6979–6994.
  • Zhang, Y., Wang, B., Zhang, X., Huang, J. and Liu, C., An effi-cient synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Bronsted acidic ionic liquid under solvent-free conditions. Molecules, 2015, 20, 3811–3820.
  • Chamle, S. N., Yadav, M. M. and Sagar, A. D., Microwave assisted rapid synthesis of 3,4-dihydropyrimidine-2-(1H)-ones/ thiones using LSA as a catalyst under solvent free conditions. Int. J. Chem. Sci., 2013, 11, 1849–1857.
  • Javad, S.-G. and Ghasemzadeh, M. A., Ultrasound-assisted syn-thesis of dihydropyrimidine-2-thiones. J. Serb. Chem. Soc., 2011, 76, 679–684.
  • Roy, S. R., Jadhavar, P. S., Seth, K., Sharma, K. K. and Chakraborti, A. K., Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicom-ponent reaction for the preparation of dihydropyrimidinones and thiones. Synthesis, 2011, 14, 2261–2267.
  • Khabazzadeh, H., Kermani, E. T. and Jazinizadeh, T., An effi-cient synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by molten [Et3NH][HSO4]. Arab. J. Chem., 2012, 5, 485–488.
  • Srivastava, V., An improved protocol for Biginelli reaction. Green Sustain. Chem., 2013, 3, 38–40.
  • Ramos, L. M. et al., Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J. Org. Chem., 2012, 77, 10184–10193.
  • Shen, Z.-L., Xu, X.-P. and Ji, S.-J., Bronsted base-catalyzed one-pot three-component Biginelli-type reaction: an efficient synthesis of 4,5,6-triaryl-3,4-dihydropyrimidin-2(1H)-one and mechanistic study. J. Org. Chem., 2010, 75, 1162–1167.
  • Fedorova, O. V. et al., Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinet. Cataly., 2011, 52, 234–241.
  • Dewan, M., Kumar, A., Saxena, A., De, A. and Mozumdar, S., Biginelli reaction catalyzed by copper nanoparticles. PLoS ONE, 2012, 8, e43078.
  • Xiea, Z.-B., Wanga, N., Wua, W.-X., Leb, Z.-G., Yua, X.-Q., Trypsin-catalyzed tandem reaction: one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones by in situ formed acetaldehyde. J. Biotechnol., 2014, 170, 1–5.
  • Hishame, A.-E., Hameed, A. M. A., Mekheimer, R. A., Awed, R. R. and Sadek, K. U., Garlic clove catalyzed Biginelli reaction in water at ambient temperature. Green Sustain. Chem., 2013, 3, 141–145.
  • Tu, S., Fang, F., Miao, C., Jiang, H., Feng, Y., Shi, D. and Wang, X., One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using boricacid as catalyst. Tetrahedron Lett., 2003, 44, 6153–6155.
  • Thi Nguyen, N.-H. et al., Au nanorod: an efficient catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the multicomponent Biginelli reaction. Chem. Select, 2017, 2, 3932–3936.
  • Kakaei, S., Kalal, H. S. and Hoveidi, H., Ultrasound assisted one-pot synthesis of dihydropyrimidinones using holmium chloride as catalyst. J. Sci., Islam. Repub. Iran, 2105, 26, 117–123.
  • Sabitha, G., Reddy, G. S. K. K., Reddy, K. B. and Yadav, J. S., Vanadium(III) chloride catalyzed Biginelli condensation: solu-tionphase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Lett., 2003, 44, 6497–6499.
  • Kundu, S. K., Majee, A. and Hajra, A., Environmentally benign aqueous zinc tetrafluoroborate-catalysed one-pot biginelli condensation at room temperature. Indian J. Chem. B, 2009, 48, 408–412.
  • Abdelmadjid, D., Raouf, B., Radia, T., Alia, B., Salah, R. and Bertrand, C., Ca(NO3)2.4H2O-catalysed Biginelli reaction: one-pot synthesis of 1,2,3,4-tetrahydropyrimidin-2-ones/pyrimidine-2-thiones under solvent-free conditions. Chin. J. Chem., 2008, 26, 2112–2116.
  • Aswin, K., Mansoor, S. S., Logaiya, K. and Sudhan, S. P. N., Triphenylphosphine: an efficient catalyst for the synthesis of 4,6-diphenyl-3,4-dihydropyrimidine-2(1H)-thione under thermal conditions. J. King Saud Univ.-Sci., 2013, 26, 1–8.
  • Ranu, B. C., Hajra, A. and Jana, U., Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65, 6270–6272.
  • Yuan, H., Zhang, K., Xia, J., Hu, X. and Yuan, S., Gallium(III) chloride-catalyzed synthesis of 3,4-dihydropyrimidinones for Biginelli reaction under solvent-free conditions. Cogent Chem., 2017, 3, 1318692.
  • Kolvari, E., Koukabi, N. and Armandpour, O., A simple and effi-cient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron, 2014, 70, 1383–1386.
  • Starcevich, J. T., Laughlin, T. J. and Mohan, R. S., Iron(III) to-sylate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones/ thiones via the Biginelli reaction. Tetrahedron Lett., 2013, 54, 983–985.
  • Azizian, J., Mohammadi, A. A., Karimi, A. R. and Moham-madizadeh, M. R., KAl(SO4)2.12H2O supported on silica gel as a novel heterogeneous system catalyzed Biginelli reaction one-pot synthesis of di-hydropyrimidinones under solvent-free conditions. Appl. Catal. A, 2006, 300, 85–88.
  • Kour, G., Gupta, M., Rajnikant, P. S. and Gupta, V. K., SiO2-CuCl2: an efficient and recyclable heterogeneous catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Mol. Catal. A, 2014, 392, 260–269.
  • Safari, J. and Soheila, G.-R., Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones accelerated under microwave irradiation. New J. Chem., 2014, 38, 3514.
  • Rameshwar, N., Parthasarathy, T. and Ram Reddy, A., Tin(IV) catalyzed one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-one under solvent free condition. Indian J. Chem. B, 47, 1871– 1875.
  • Hojatollah, K., Kazem, S. and Hassan, S., Microwave-assisted synthesis of dihydropyrimidin-2(1H)-ones using graphite supported lanthanum chloride as a mildand efficient catalyst. Bioorg. Med. Chem. Lett., 2008, 18, 278–280.
  • Salehi, P., Dabiri, M., Zolfigol, M. A. and Bodaghi, F. M. A., Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44, 2889–2891.
  • Liu, C.-J. and Wang, J.-D., Copper (II) sulfamate: an efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones and thiones. Molecules, 2009, 14, 763–770.
  • Ahmed, N. and Lier, J. E., TaBr5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett., 2007, 48, 5407–5409.
  • Huang, Y., Yang, F. and Zhu, C., Highly enantioseletive Biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J. Am. Chem. Soc., 2005, 127, 16386–16387.
  • Adib, M., Ghanbary, K., Mostofi, M. and Ganjali, M. R., Effi-cient Ce(NO3)3.6H2O-catalyzed solvent-free synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Molecules, 2006, 11, 649–654.
  • Khatab, T. K., El-Bayouki, K. A. M., Basyouni, W. M. and Sroor, F. M. A., An efficient synthesis of biopertinent dihydropyrimi-dine (thi) one derivatives via three-component one-pot synthesis catalyzed by tetrachlorosilane. Egypt J. Chem., 2013, 56, 291–305.
  • Zhang, H., Zhou, Z., Yao, Z., Xu, F. and Shen, Q., Efficient syn-thesis of pyrimidinone derivatives by ytterbium chloride cata-lyzed Biginelli-type reaction under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1622–1624.
  • Prajapti, S. K., Gupta, K. K. and Babu, B. N., B(C6F5)3 catalyzed one-pot three-component Biginelli reaction: an efficient and environmentally benign protocol for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. J. Chem. Sci., 2015, 127, 1047–1052.
  • Khodja, I. A., Boulcina, R. and Debache, A., Copper(II) acetate promoted facile synthesis of dihydropyrimidinone derivatives via a solvent free Biginelli multicomponent reaction. J. Chem. Phar-maceut. Res., 2014, 6, 1040–1045.
  • Bashti, A. and Kiasat, A. R., Biginelli multicomponent condensa-tion reaction promoted by 4,4-bipyridinium dichloride ordered mesoporous silica nanocomposite under solvent free conditions. Org. Chem. Res., 2016, 2, 28–38.
  • Rajeshwari, M., Priyanka, K. and Sarada, L. N., Chloromine-T: a simple and efficient catalyst for one-pot synthesis of Biginelly 3,4-dihydropyrimidin-2-(1H)-ones. Indian J. Adv. Chem. Sci., 2013, 1, 112–116.
  • Khajesamani, H., Pouramiri, B., Kermany, E. T. and Khabazza-deh, H., An efficient, three-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones using LaCl3/ClCH2COOH as envi-ronmentally benign and green catalytic system. J. Sci., Islam. Repub. Iran, 2014, 25, 323–327.
  • Kadre, T., Jetti, S. R., Bhatewara, A., Paliwal, P. and Jain, S., Green protocol for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones using TBAB as a catalyst and solvent free condition under microwave irradiation. Arch. Appl. Sci. Res., 2012, 4, 988–993.
  • Sagar, A. D., Reddy, S. M., Pulle, J. S. and Yadav, M. V., Multi-component Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by phenyl phosphonic acid. J. Chem. Pharm. Res., 2011, 3, 649–654.
  • Khorshidi, A., Tabatabaeian, K., Azizi, H., Mehraneh, A.-H. and Esmayeel, A.-G., Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by a new heterogeneous catalyst based on cofunctionalized Na+-montmorillonite. RSC Adv., 2017, 7, 17732.
  • Aloui, L., Kossentini, M., Claude, G.-R., Guillard, J. and Zouari, S., Phytochemical investigation, isolation and characterization of coumarins from aerial parts and ischolar_mains of Tunisian Pituranthos chloranthus (Apiaceae). Pharmacogn. Commun., 2015, 5, 237–243.
  • Liu, R., Sunb, Q., Shi, Y. and Kong, L., Isolation and purification of coumarin compounds from the ischolar_main of Peucedanum decursivum (Miq.) Maxim by high-speed counter-current chromatography. J. Chromatogr. A, 2005, 1076, 127–132.
  • Yasameen, A.-M., Ahmed, A.-A., Kadhum, A. A. and Mohamad, A. B., Antioxidant activity of coumarins. Syst. Rev. Pharm., 2017, 8, 24–30.
  • Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M. and Garaliene, V., Synthesis and antitumor activity of 1,5,6-substituted E-3-(2-chloro-3-indolylmethylene)-1,3-di-hydroindol-2-ones. J. Med. Chem., 2002, 45, 2666–2669.
  • Creaven, B. S., Egan, D. A., Kavanagh, K., Malachy, M., Noble, A. and Thati, B., Maureen walsh a synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver(I) complexes. Inorg. Chim. Acta, 2006, 359, 3976–3984.
  • Kontogiorgis, C. A. and Dimitra, J. H.-L., Synthesis and anti-inflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48, 6400–6408.
  • Prashanth, T., Bushra, B. A., Khanum, N. F. and Khanum, S. A., Synthesis and characterization of coumarin analogs: evaluation of antimicrobial and antioxidant activities. Int. Res. J. Pharm., 2018, 9, 22–30.
  • Lei, L. et al., Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5, 13544.
  • He, X., Shang, Y., Zhou, Y., Yu, Z., Han, G., Jin, W. and Chen, J., Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum’s acid and alcohols. Tetrahedron, 2015, 71, 863–865.
  • Abdel-Wahab, B. F., Mohamed, H. A. and Format, A. A., Ethyl coumarin-3-carboxylate: synthesis and chemical properties. Org. Commun., 2014, 7, 1–27.
  • Karami, B., Farahi, M. and Khodabakhshi, S., Rapid synthesis of novel and known coumarin-3-carboxylic acids using stannous chloride dihydrate under solvent-free conditions. Helv. Chim. Acta, 2012, 95, 455–460.
  • Nagendrappa, G., Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci., 2011, 53, 106–138.
  • Anthony, A. R., Choudhary, A. and Gajbhiye, S., An efficient catalyzed green synthesis of substituted coumarins using potassi-um dihydrogen phosphate catalyst and studies on their anti-microbial activities. J. Appl. Chem., 2014, 7, 22–27.
  • Undale, K. A., Gaikwad, D. S., Shaikh, T. S., Desai, U. V. and Pore, D. M., Potassium phosphate catalyzed efficient synthesis of 3-carboxycoumarins. Indian J. Chem., Sect. B, 2012, 51, 1039–1042.
  • Fillion, E, Dumas, A. M., Kuropatwa, B. A., Malhotra, N. R. and Sitler, T. C., Yb(OTf)3-catalyzed reactions of 5-alkylidene Mel-drum’s acids with phenols: one-pot assembly of 3,4-dihydrocoumarins, 4-chromanones, coumarins and chromones. J. Org. Chem., 2006, 71, 409–412.
  • Reddy, B. M., Thirupathi, B. and Patil, M. K., One-pot synthesis of substituted coumarins catalyzed by silica gel supported sulfuric acid under solvent-free conditions. Open Catal. J., 2009, 2, 33–39.
  • Kantharaju, K. and Khatavi, S. Y., Mechanochemical synthesis of coumarin-3-carboxylic acid using water extract of papaya. Int. J. Eng. Technol. Sci. Res., 2017, 4, 510–513.
  • Scott, J. L. and Raston, C. L., Solvent-free synthesis of 3-carboxycoumarins Green Chem., 2000, 2, 245–247.
  • Kantharaju, K. and Khatavi, S. Y., Microwave accelerated syn-thesis of 2-amino-4H-chromenes catalyzed by WELFSA: a green protocol. Chem. Select, 2018, 3, 5016–5024.
  • Kantharaju, K. and Khatavi, S. Y., A green method synthesis and antimicrobial activity of 2-amino-4H-chromene derivatives. Asian J. Chem., 2018, 30, 1492–1502.
  • Suresh, S. K., Kallappa, M. H., Gangadhar, C. G. and Shrinivas, D. J., Functionalization of 3-chloroformylcoumarin to coumarin Schiff bases using reusable catalyst: an approach to molecular docking and biological studies. R. Soc. Open Sci., 2018, 5, 172416.
  • Kalapathy, U., Proctor, A. and Shultz, J., A simple method for production of pure silica from rice hull ash. Bioresour. Technol., 2000, 73, 257–262.
  • Ghorbani, F., Sanati, A. M. and Maleki, M., Production of silica nanoparticles from rice husk as agricultural waste by envi-ronmental friendly technique. Environ. Stud. Persian Gulf, 2015, 2, 56–65.

Abstract Views: 280

PDF Views: 71




  • Rice Husk SiO2 (NPs) Supported-BO3H3:A Highly Active, Solvent-Free and Recyclable Catalyst to Dihydropyrimidin-2(1H)ones- (Thiones) and Coumarin-3-Carboxylic Acid Synthesis

Abstract Views: 280  |  PDF Views: 71

Authors

S. Y. Khatavi
Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591 156, India
K. Kantharaju
Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591 156, India
H. Yamanappa
NMR Research Centre, Indian Institute of Science, Bengaluru 560 012, India
S. Raghothama
NMR Research Centre, Indian Institute of Science, Bengaluru 560 012, India

Abstract


3,4-Dihydropyrimidin-2(1H)ones(thiones) (DHPM) and coumarin-3-carboxylic acid are obtained in excellent to good yield by employing green catalyst under sol-vent-free condition. The condensation of substituted arylaldehyde, 1,3-diketoester and urea/thiourea in the presence of green catalyst after 1 h of stirring at 50°C resulted in DHPM. The reaction of substituted o-hydroxybenzaldehyde with Meldrum’s acid in the presence of catalyst under sonication for a few minutes gave coumarin-3-carboxylic acid. Here, we have used Lewis acid catalyst RHA–SiO2(NPs)–BO3H3 derived from the agro-waste of rice husk, a heteroge-neous catalyst for important organic scaffold synthe-sis. The reaction required low catalyst loading (1.2 mg) to achieve a target product under solvent-free condition. A series of other derivatives of heterogene-ous catalysts synthesized are RHA–SiO2, RHA–SiO2(NPs), RHA–SiO2–BO3H3. We examined their catalytic activity in the synthesis of DHPM and cou-marin-3-carboxylic acid. Only the reaction catalysed by RHA–SiO2(NPs)–BO3H3 gave excellent yield of the product. The final isolated pure product has been fully characterized by various spectroscopic methods and confirmed.

Keywords


Agro-Waste, Coumarin-3-Carboxylic Acid, Dihydropyrimidin-2(1H)ones(Thiones), Heterogeneous Catalyst, Rice Husk.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi11%2F1828-1841