Open Access Open Access  Restricted Access Subscription Access

Tropical Tropopause Layer Characteristics Observed at Different Scales Over the Complete Indian Region using INSAT-3D Sounder Measurements


Affiliations
1 National Atmospheric Research Laboratory, Department of Space, Gadanki 517 112, India
 

Several studies were carried out for understanding the temporal variability of the tropopause characteristics using radiosonde measurements. This paper investigates the variability of tropopause characteristics using INSAT-3D temperature profiles. The seasonal mean of cold point tropopause temperature (CPT) and corresponding pressure (CPH), convective tropopause temperature (COT) and corresponding pressure (COH) obtained from the hourly temperature profiles of the INSAT-3D represents the actual seasonal average of the tropopause parameters devoid of short-term perturbations like tides and high frequency gravity waves. Below 20°N, the CPT is colder and higher but this relation disappears in subtropics. The effect of tides and high frequency gravity waves on the tropopause temperatures are briefly outlined. The diurnal variability in CPT over Gadanki obtained from INSAT-3D and radiosonde are compared. It is shown that INSAT-3D can be effectively utilized to delineate the tropical tropopause characteristics.

Keywords

Radiosonde Measurement, Sub-Daily Variations, Tropopause Temperature, Temporal and Spatial Resolution.
User
Notifications
Font Size

  • Selkirk, H. B., The tropopause cold trap in the Australian monsoon during STEP/AMEX 1987. J. Geophys. Res. Atmos., 1993, 98, 8591–8610.
  • Randel, W. J. and Jensen, E. J., Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature Geosci., 2013, 6, 169–176.
  • Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W., Tropical tropopause layer. Rev. Geophys., 2009, 47, 1–31.
  • Sunilkumar, S. V., Muhsin, M., Venkat Ratnam, M., Parameswaran, K., Krishna Murthy, B. V. and Emmanuel, M., Boundaries of tropical tropopause layer (TTL): a new perspective based on thermal and stability profiles. J. Geophys. Res.-Atmos., 2017, 122, 741–754.
  • Gettelman, A. and Forster, P. M., A climatology of the tropical tropopause layer. J. Meteorol. Soc. Jpn, 2002, 80, 911–924.
  • Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B. and Pfister, L., Stratosphere–troposphere exchange. Rev. Geophys., 1995, 33, 403–439.
  • Mote, P. W. et al., An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res.-Atmos., 1996, 101, 3989–4006.
  • Robinson, G. D., The transport of minor atmospheric constituents between troposphere and stratosphere. Q. J. R. Meteorol. Soc., 1980, 106, 227–253.
  • Santer, B. D. et al., Response to comment on ‘Contributions of anthropogenic and natural forcing to recent tropopause height changes’. Science, 2004, 303, 1771.
  • Seidel, D. J. and Randel, W. J., Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res.Atmos., 2006, 111, 1–17.
  • Gage, K. S. and Reid, G. C., Solar variability and the secular variation in the tropical tropopause. Geophys. Res. Lett., 1981, 8, 187–190.
  • Tsuda, T., Murayama, Y., Wiryosumarto, H., Harijono, S. W. B., and Kato, S., Radiosonde observations of equatorial atmosphere dynamics over Indonesia 2. Characteristics of gravity waves. J. Geophys. Res.-Atmos., 1994, 99.
  • Reid, G. C. and Gage, K. S., The tropical tropopause over the western Pacific: wave driving, convection, and the annual cycle. J. Geophys. Res.-Atmos., 1996, 101(D16), 21233–21241.
  • Shimizu, A. and Tsuda, T., Variations in tropical tropopause observed with radiosondes in Indonesia. Geophys. Res. Lett., 2000, 27, 2541–2544.
  • Ratnam, M. V., Tsuda, T., Mori, S. and Kozu, T., Modulation of tropopause temperature structure revealed by simultaneous radiosonde and CHAMP GPS measurements. J. Meteorol. Soc. Jpn, 2006, 84, 989–1003.
  • Parameswaran, K., Thampi, B. V. and Sunilkumar, S. V., Latitudinal dependence of the seasonal variation of particulate extinction in the UTLS over the Indian longitude sector during volcanically quiescent period based on lidar and SAGE-II observations. J. Atmos. Sol.-Terres. Phys., 2010, 72, 1024– 1035.
  • Sunilkumar, S. V., Babu, A. and Parameswaran, K., Mean structure of the tropical tropopause and its variability over the Indian longitude sector. Climate Dyn., 2013, 40, 1125–1140.
  • Johnson, R. H., Short-term variations of the tropopause height over the winter MONEX area. J. Atmos. Sci., 1986, 43(11), 1152– 1163.
  • Mehta, S. K. et al., Identification of tropical convective tropopause and its association with cold point tropopause. J. Geophys. Res.-Atmos., 2008, 113, 2–9.
  • Sherwood, S., Horinouchi, T. and Zeleznik, H., Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci., 2003, 60, 1847–1857.
  • Kumar, A. H., Ratnam, M. V., Sunilkumar, S. V, Parameswaran, K. and Murthy, B. V. K., Role of deep convection on the tropical tropopause characteristics at sub-daily scales over the South India monsoon region. Atmos. Res., 2015, 161–162, 14–24.
  • Venkat Ratnam, M., Hemanth Kumar, A. and Jayaraman, A., Validation of INSAT-3D sounder data with in situ measurements and other similar satellite observations over India. Atmos. Meas. Tech., 2016, 9, 5735–5745.
  • Hayden, M. C., GOES-VAS temperature–moisture retrieval algorithm. J. Appl. Meteorol., 1988, 27, 705–733.
  • Ma, X. L., Schmit, T. J. and Smith, W. L., A nonlinear physical retrieval algorithm – its application to the GOES-8/9 sounder. J. Appl. Meteorol., 1999, 38, 501–513.
  • Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H. L. and Achtor, T. H., Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol., 2000, 39, 1248–1268.
  • Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E., Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atmos., 1998, 103, 32141– 32157.
  • Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H.-L. and Achtor, T. H., Global soundings of the atmosphere from ATOVS measurements: the algorithm and validation. J. Appl. Meteorol., 2000, 39, 1248–1268.
  • Venkat Ratnam, M. et al., Tropical tropopause dynamics (TTD) campaigns over Indian region: an overview. J. Atmos. SolarTerrestrial Phys., 2014, 121, 229–239.
  • Singh, T., Mittal, R. and Shukla, M. V., Validation of INSAT-3D temperature and moisture sounding retrievals using matched radiosonde measurements. Int. J. Remote Sens., 2017, 38, 3333– 3355.
  • Krishna Murthy, B. V., Parameswaran, K. and Rose, K. O., Temporal variations of the tropical tropopause characteristics. J. Atmos. Sci., 1986, 43(9), 914–922.
  • Gage, K. S. and Reid, G. C., Aeronomy Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado 80303. 1981, 8, 187–190.
  • Ratnam, M. V., Tsuda, T., Shiotani, M. and Fujiwara, M., New characteristics of the tropical tropopause revealed by CHAMP/GPS measurements. Sola, 2005, 1, 185–188.
  • Randel, W. J., Wu, F. and Gaffen, D. J., Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res. Atmos., 2000, 105, 15509–15523.
  • Dethof, A., O’Neill, A., Slingo, J. and Smit, H., A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Q. J. R. Meteorol. Soc., 1999, 125, 1079–1106.
  • Norton, W. A., Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: model results. J. Atmos. Sci., 2006, 63, 1420–1431.
  • Meenu, S., Rajeev, K., Parameswaran, K. and Nair, A. K. M., Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. J. Geophys. Res.-Atmos., 2010, 115, 1–12.
  • Dey, S., Nishant, N., Sengupta, K. and Ghosh, S., Cloud climatology over the oceanic regions adjacent to the Indian Subcontinent: inter-comparison between passive and active sensors. Int. J. Remote Sens., 2015, 36, 899–916.
  • Das, S. S., Jain, A. R., Kumar, K. K. and Rao, D. N., Diurnal variability of the tropical tropopause: Significance of VHF radar measurements. Radio Sci., 2008, 43, 1–14.
  • Sasi, M. N., Ramkumar, G. and Deepa, V., Nonmigrating diurnal tides in the troposphere and lower stratosphere over Gadanki (13.5°N, 79.2°E). J. Geophys. Res. Atmos., 1998, 103, 19485– 19494.
  • Kishore, P., Velicogna, I., Venkat Ratnam, M., Jiang, J. H. and Madhavi, G. N., Planetary waves in the upper stratosphere and lower mesosphere during 2009 Arctic major stratospheric warming. Ann. Geophys., 2012, 30, 1529–1538.
  • Coughlin, K. and Tung, K. K., Eleven-year solar cycle signal throughout the lower atmosphere. J. Geophys. Res. Atmos., 2004, 109, 1–7.
  • Huang, B., Hu, Z. Z., Kinter, J. L., Wu, Z. and Kumar, A., Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: Methodology and composite life cycle. Climate Dyn., 2012, 38, 1–23.
  • Suneeth, K. V., Das, S. S. and Das, S. K., Diurnal variability of the global tropical tropopause: results inferred from COSMIC observations. Climate Dyn., 2017, 49, 3277–3292.
  • Shepherd, T. G., Issues in stratosphere-troposphere coupling. J. Meteorol. Soc. Jpn, 2002, 80, 769–792.

Abstract Views: 262

PDF Views: 96




  • Tropical Tropopause Layer Characteristics Observed at Different Scales Over the Complete Indian Region using INSAT-3D Sounder Measurements

Abstract Views: 262  |  PDF Views: 96

Authors

A. Hemanth Kumar
National Atmospheric Research Laboratory, Department of Space, Gadanki 517 112, India
M. Venkat Ratnam
National Atmospheric Research Laboratory, Department of Space, Gadanki 517 112, India

Abstract


Several studies were carried out for understanding the temporal variability of the tropopause characteristics using radiosonde measurements. This paper investigates the variability of tropopause characteristics using INSAT-3D temperature profiles. The seasonal mean of cold point tropopause temperature (CPT) and corresponding pressure (CPH), convective tropopause temperature (COT) and corresponding pressure (COH) obtained from the hourly temperature profiles of the INSAT-3D represents the actual seasonal average of the tropopause parameters devoid of short-term perturbations like tides and high frequency gravity waves. Below 20°N, the CPT is colder and higher but this relation disappears in subtropics. The effect of tides and high frequency gravity waves on the tropopause temperatures are briefly outlined. The diurnal variability in CPT over Gadanki obtained from INSAT-3D and radiosonde are compared. It is shown that INSAT-3D can be effectively utilized to delineate the tropical tropopause characteristics.

Keywords


Radiosonde Measurement, Sub-Daily Variations, Tropopause Temperature, Temporal and Spatial Resolution.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi11%2F1813-1827