Open Access Open Access  Restricted Access Subscription Access

Treatment of Wastewater Generated from Coke Oven by Adsorption on Steelmaking Slag and its Effect on Cementitious Properties


Affiliations
1 Department of Civil Engineering, Jamia Millia Islamia (Central University), New Delhi 110 025, India
 

In this study, steelmaking slag is selected as an adsorption material to treat coke-oven wastewater. The study shows the use of solid waste to treat liquid waste of the same industry. The full effect of adsorption on steel slag with coke-oven wastewater has been analysed using SEM, XFR, XRD, FTIR and GC-MS. The adsorption pattern for steel slag at high temperatures, i.e. up to 1100°C was studied. It is observed that adsorption of pollutants does not favour higher temperature. Leaching studies showed increase in traces of heavy metals. However, only arsenic was found to be leaching beyond permissible limits. GC-MS studies showed no disorption of organic compounds from the treated slag. Compressive strength slightly weakened for the slag after adsorption, but lime saturation factor as well as soundness favoured the use of treated slag as an adsorbent. Overall analysis suggests that steel slag can be used for adsorption of coke-oven wastewater pollutant at lower temperatures. Thus steelmaking slag is found to be an efficient, readily available and economical adsorbent for removal of toxins from the coke-oven wastewater at lower temperatures.

Keywords

Coke-Oven Wastewater, Compressive Strength, Leaching, Steelmaking Slag.
User
Notifications
Font Size

  • Ghose, M., Complete physico-chemical treatment for coke plant effluents. Water Res., 2002, 36, 1127–1134; doi:10.1016/S00431354(01)00328-1.
  • Biswas, J., Evaluation of various methods and efficiencies for treatment of effluent from iron and steel industry – a review. Int. J. Mech. Eng. Robot Res., 2013; http://www.ijmerr.com/uploadfile/2015/0409/20150409043210915.pdf (accessed on 29 August 2017).
  • Papadimitriou, C. A., Samaras, P. and Sakellaropoulos, G. P., Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors. Bioresour. Technol., 2009, 100, 31–37; doi:10.1016/j.biortech.2008.06.004.
  • Dong, Y. and Zhang, J., Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays. Ecotoxicol. Environ. Saf., 2010, 73, 944–948; doi:10.1016/j.ecoenv.2009.12.026.
  • Ahmed, S., Chandra, U. and Rathi, R., Waste water treatment technologies commonly practiced in major steel industries of India. In 16th Annual International Sustainable Development Research Conference, The University of Hong Kong, Hong Kong, 2010.
  • Vázquez, I., Rodríguez, J., Marañón, E., Castrillón, L. and Fernández, Y., Study of the aerobic biodegradation of coke wastewater in a two and three-step activated sludge process. J. Hazard. Mater., 2006, 137, 1681–1688; doi:10.1016/j.jhazmat.2006.05.007.
  • Marañón, E., Vázquez, I., Rodríguez, J., Castrillón, L. and Fernández, Y., Coke wastewater treatment by a three-step activated sludge system. Water Air Soil Pollut., 2008, 192, 155– 164; doi:10.1007/s11270-008-9642-y.
  • Zhao, W., Huang, X. and Lee, D., Enhanced treatment of coke plant wastewater using an anaerobic–anoxic–oxic membrane bioreactor system. Sep. Purif. Technol., 2009, 66, 279–286; doi:10.1016/j.seppur.2008.12.028.
  • Marañón, E., Vázquez, I., Rodríguez, J., Castrillón, L., Fernández, Y. and López, H., Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour. Technol., 2008, 99, 4192–4198; doi:10.1016/j.biortech.2007.08.081.
  • Wang, W., Han, H., Yuan, M., Li, H., Fang, F. and Wang, K., Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal. Bioresour. Technol., 2011, 102, 5454–5460; doi:10.1016/j.biortech.2010.10.019.
  • Chang, E.-E., Hsing, H.-J., Chiang, P.-C., Chen, M.-Y. and Shyng, J.-Y., The chemical and biological characteristics of coke-oven wastewater by ozonation. J. Hazard. Mater., 2008, 156, 560–567; doi:10.1016/j.jhazmat.2007.12.106.
  • Li, X. L., Liu, X. and Cao, G. P., Kinetic and thermodynamic studies of adsorption of phosphate on steel-slag filter material. Appl. Mech. Mater., 2014, 507, 707–710; doi:10.4028/www.scientific.net/AMM.507.707.
  • Duan, J., Fang, H., Lin, J., Lin, J. and Huang, Z., Simultaneous removal of NH4 and PO43– at low concentrations from aqueous solution by modified converter slag. Water Environ. Res., 2013, 85, 530–538; doi:10.2175/106143013X13596524516860.
  • Heksavalentnega, A. et al., Adsorption of hexavalent chromium from an aqueous solution of steel-making slag; http://mit.imt.si/Revija/izvodi/mit145/strkalj.pdf (accessed on 4 September 2017).
  • Duan, J. and Su, B., Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chem. Eng. J., 2014, 246, 160–167; doi:10.1016/j.cej.2014.02.056.
  • Lan, Y., Zhang, S., Wang, J. and Smith, R., Phosphorus removal using steel slag. Acta Metall. Sin. (Eng. Lett.), 2006, 19, 449–454; doi:10.1016/S1006-7191(06)62086-3.
  • Sadhu, K., Mukherjee, A., Shukla, S. K., Adhikari, K. and Dutta, S., Adsorptive removal of phenol from coke-oven wastewater using Gondwana shale, India: experiment, modeling and optimization. Desalin. Water Treat., 2014, 52, 6492–6504; doi:10.1080/19443994.2013.815581.
  • Gao, L., Li, S., Wang, Y. and Sun, H., Organic pollution removal from coke plant wastewater using coking coal. Water Sci. Technol., 2015, 72, 158; doi:10.2166/wst.2015.197.
  • He Zhang, M., Lin Zhao, Q., Bai, X. and Ye, Z. F., Adsorption of organic pollutants from coking wastewater by activated coke. Colloids Surf. A Phys. Eng. Asp., 2010, 362, 140–146; doi:10.1016/j.colsurfa.2010.04.007.
  • Dhoble, Y. N. and Ahmed, S., Equilibrium, kinetic and thermodynamic studies on the adsorption of thiocyanate by steel slag in an aqueous system. AET, 2017, 3; 193–203; doi:10.22104/ AET.2018.2670.1133.
  • Dhoble, Y. N. and Ahmed, S., Removal of phenol, ammonia and thiocyanate either alone or in combination by the adsorption with steel slag. Int. J. Eng. Res. Dev., 2017, 13, 2278–67; http://www.ijerd.com/paper/vol13-issue12/Version-1/L131217786.pdf (accessed on 18 January 2018).
  • Dhoble, Y. N. and Ahmed, S., Column studies for the simultaneous removal of phenol, ammonia and thiocyanate by the adsorption with steel slag. Int. J. Res. Appl. Sci. Eng. Technol., 2018, 2321–9653; www.ijraset.com (accessed on 19 April 2018).
  • Pal, P. and Kumar, R., Treatment of coke wastewater: a critical review for developing sustainable management strategies. Sep. Purif. Rev., 2014, 43, 89–123; doi:10.1080/15422119.2012.717161.
  • Hooton, R., Shi, C. and Day, R., Selectivity of alkaline activators for the activation of slags. Cem. Concr. Aggr., 1996, 18, 8; doi:10.1520/CCA10306J.
  • Baker, M. J., David, W., Blowes and Ptacek, C. J., Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ. Sci. Technol., 1998, 32, 2308–2316; doi:10.1021/ES970934W.
  • Liu, S.-Y., Gao, J., Qu, B. and Yang, Y., Adsorption behaviors of heavy metal ions by steel slag – an industrial solidwaste. In The Third International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 2009, pp. 1–4; doi:10.1109/ICBBE.2009.5162282.
  • Feng, D., Van Deventer, J. S. J. and Aldrich, C., Removal of pollutants from acid mine wastewater using metallurgical byproduct slags. Sep. Purif. Technol., 2004, 40, 61–67; doi:10.1016/j.seppur.2004.01.003.
  • Simmons, J. S. and Ziemkiewicz, P., An alternative alkaline addition for direct treatment of acid mine drainage, Mining and the environment, Sudbury, Canada, 2003.
  • Singh, G. and Prasad, B., Removal of ammonia from coke-plant wastewater by using synthetic zeolite. Water Environ. Res., 1997, 69, 157–161; doi:10.2307/25044857.
  • Lim, T.-T. and Chu, J., Assessment of the use of spent copper slag for land reclamation. Waste Manage. Res., 2006, 24, 67–73; doi:10.1177/0734242X06061769.
  • Oh, C., Rhee, S., Oh, M. and Park, J., Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. J. Hazard Mater., 2012, 213, 147–155; doi:10.1016/j.jhazmat.2012.01.074.
  • Ziemkiewicz, P., Steel slag: application for AMD control. In Conference on Hazardous Waste Research, 1998, pp. 44–62.
  • Navarro, C., Díaz, M. and Villa-García, M. A., Physico-chemical characterization of steel slag. Study of its behaviour under simulated environmental conditions. Environ. Sci. Technol., 2010, 44, 5383–5388; doi:10.1021/es100690b.
  • Pueyo, N., Rodríguez-Chueca, J., Ovelleiro, J. L. and Ormad, M. P., Limitations of the removal of cyanide from coking wastewater by treatment with hydrogen peroxide. Water, Air, Soil Pollut., 2016, 227, 222; doi:10.1007/s11270-016-2915-y.
  • Vicak, J., Tomkova, V., Ovcacikova, H., Ovcacik, F., Topinkova, M. and Matejka, V., Slag and Steel Production: Properties and Their Utilization, Metalurgija, Centar za informiranje željezare Sisak, vol. 52, 2013.
  • Kourounis, S., Tsivilis, S., Tsakiridis, P. E. E., Papadimitriou, G. D. D. and Tsibouki, Z., Properties and hydration of blended cements with steelmaking slag. Cem. Concr. Res., 2007, 37, 815– 822; doi:10.1016/j.cemconres.2007.03.008.
  • Karthikeyan, G. and Ilango, S. S., Adsorption of Cr(VI) onto activated carbons prepared from indigenous materials. E-J. Chem., 2008, 5, 666–678; doi:10.1155/2008/109398.
  • Beh, C. L., Chuah, T. G., Nourouzi, M. N. and Choong, T., Removal of heavy metals from steel making waste water by using electric arc furnace slag. E-J. Chem., 2012, 9, 2557–2564; doi:10.1155/2012/128275.
  • Ullah, R. and Dutta, J., Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater., 2008, 156, 194–200; doi:10.1016/J.JHAZMAT.2007.12.033.
  • Jung, E.-J., Kim, W., Sohn, I. and Min, D.-J., A study on the interfacial tension between solid iron and CaO–SiO2–MO system. J. Mater. Sci., 2010, 45, 2023–2029; doi:10.1007/s10853-0093946-1.
  • Chand, S., Paul, B. and Kumar, M., A comparative study of physicochemical and mineralogical properties of LD slag from some selected steel plants in India. J. Environ. Sci. Technol., 2016, 9, 75–87; doi:10.3923/jest.2016.75.87.
  • Gomes, J. F. P., Pinto, C. G. and Pinto, C. G., Leaching of heavy metals from steelmaking slags. Revista de Metallurgia, 2006, 42, 409–416; doi:10.3989/revmetalm.2006.v42.i6.39.
  • Riley, A. L. and Mayes, W. M., Long-term evolution of highly alkaline steel slag drainage waters. Environ. Monit. Assess., 2015, 187, 463; doi:10.1007/s10661-015-4693-1.
  • Tiwari, M. K., Bajpai, S., Dewangan, U. K. and Tamrakar, R. K., Suitability of leaching test methods for fly ash and slag: a review. J. Radiat. Res. Appl. Sci., 2015, 8, 523–537; doi:10.1016/j.jrras.2015.06.003.
  • Chaurand, P. et al., Environmental impacts of steel slag reused in road construction : a crystallographic and molecular (XANES) approach. J. Hazard. Mater., 2006, 139, 537–542; doi:10.1016/j.jhazmat.2006.02.060.
  • De Windt, L., Chaurand, P. and Rose, J., Kinetics of steel slag leaching: batch tests and modeling. Waste Manag., 2011, 31, 225– 235; doi:10.1016/j.wasman.2010.05.018.
  • Tossavainen, M., Engstrom, F., Yang, Q., Menad, N., Lidstrom, Larsson M. and Bjorkman, B., Characteristics of steel slag under different cooling conditions. Waste Manage., 2007, 27, 1335– 1344; doi:10.1016/j.wasman.2006.08.002.
  • Fjällborg, B., Li, B., Nilsson, E. and Dave, G., Toxicity identification evaluation of five metals performed with two organisms (Daphnia magna and Lactuca sativa). Arch. Environ. Contam Toxicol., 2006, 50, 196–204; doi:10.1007/s00244-0057017-6.
  • BIS, Indian Standard (Second Revision) IS 10500 (2012), Bureau of Indian Standard, New Delhi; 2012, pp. 1–16; http://cgwb.gov.in/Documents/WQ-standards.pdf
  • Shi, C., Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res., 2002, 32, 459–462; doi:10.1016/S0008-8846(01)00707-4.
  • Fronek, B., Bosela, P. and Delatte, N., Steel slag aggregate used in portland cement concrete. Transp. Res. Rec. J. Transp. Res. Board., 2012, 2267, 37–42; doi:10.3141/2267-04.
  • Wang, Q., Yang, J. and Yan, P., Cementitious properties of superfine steel slag. Powder Technol., 2013, 245, 35–39; doi:10.1016/ j.powtec.2013.04.016.
  • Kurdowski, W., Cement and Concrete Chemistry, Springer Science and Business, 2014, 9789400779, pp. 1–100.

Abstract Views: 234

PDF Views: 90




  • Treatment of Wastewater Generated from Coke Oven by Adsorption on Steelmaking Slag and its Effect on Cementitious Properties

Abstract Views: 234  |  PDF Views: 90

Authors

Yogesh Nathuji Dhoble
Department of Civil Engineering, Jamia Millia Islamia (Central University), New Delhi 110 025, India
Sirajuddin Ahmed
Department of Civil Engineering, Jamia Millia Islamia (Central University), New Delhi 110 025, India

Abstract


In this study, steelmaking slag is selected as an adsorption material to treat coke-oven wastewater. The study shows the use of solid waste to treat liquid waste of the same industry. The full effect of adsorption on steel slag with coke-oven wastewater has been analysed using SEM, XFR, XRD, FTIR and GC-MS. The adsorption pattern for steel slag at high temperatures, i.e. up to 1100°C was studied. It is observed that adsorption of pollutants does not favour higher temperature. Leaching studies showed increase in traces of heavy metals. However, only arsenic was found to be leaching beyond permissible limits. GC-MS studies showed no disorption of organic compounds from the treated slag. Compressive strength slightly weakened for the slag after adsorption, but lime saturation factor as well as soundness favoured the use of treated slag as an adsorbent. Overall analysis suggests that steel slag can be used for adsorption of coke-oven wastewater pollutant at lower temperatures. Thus steelmaking slag is found to be an efficient, readily available and economical adsorbent for removal of toxins from the coke-oven wastewater at lower temperatures.

Keywords


Coke-Oven Wastewater, Compressive Strength, Leaching, Steelmaking Slag.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi8%2F1346-1355