Open Access Open Access  Restricted Access Subscription Access

Benthic Communities of Mesophotic Coral Ecosystem off Puducherry, East Coast of India


Affiliations
1 ICAR-Madras Research Centre of the Central Marine Fisheries Research Institute, Chennai 600 028, India
2 ICAR-Vizhinjam Research Centre of the Central Marine Fisheries Research Institute, Cochin 695 521, India
3 ICAR-Central Marine Fisheries Research Institute, Cochin 682 018, India
 

The shallow coral reef ecosystems along the Indian coast are being threatened by anthropogenic global ocean warming and increased frequency of coral bleaching in the recent past. Identification and conservation of deeper reef habitats are essential as they serve as a source of larvae and livestock to replenish the shallow reef habitats. Information on the location and spatial extent of the mesophotic coral ecosystems (MCEs) and their biodiversity is poorly known in the continental shelf of the east coast of India. In this study, we have documented the species diversity of MCEs at a depth of 30–40 m off Puducherry along the east coast of India. In total, 12 species of corals, including 5 black corals and 16 octocorals, 4 species of sponges and 31 species of coral-associated benthopelagic fish species were recorded. Subergorgia sp. was the most dominant species of octocorals and found extensively as gorgonian forests. The MCEs reported in this study raise important questions about the origin and connectivity of the coral populations in this region to the other major coral reef ecosystems along the east coast. Understanding the physical processes and hydrographic features around the MCEs, off Puducherry will reveal more information about the distribution and colonization of coral communities and their vulnerability to changes in future.

Keywords

Benthic Communities, Gorgonian Forest, Mesophotic Coral Ecosystems, Reef Habitats.
User
Notifications
Font Size

  • Lesser, M. P., Slattery, M. and Leichter, J. J., Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol., 2009, 375, 1–8.
  • Kahng, S. E. et al., Community ecology of mesophotic coral reef ecosystems. Coral Reefs, 2010, 29(2), 255–275.
  • Kleypas, J. A., McManus, J. W. and Meñez, L. A., Environmental limits to coral reef development: where do we draw the line?. Am. Zool., 1999, 39, 146–159.
  • Hinderstein, L. M. et al., Mesophotic coral ecosystems: characterization, ecology, and management. Coral Reefs, 2010, 29, 247– 251.
  • Wagner, D., Pochon, X., Irwin, L., Toonen, R. J. and Gates, R. D., Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc. R. Soc. London Ser. B, 2011, 278, 1323–1328.
  • Bejarano, I., Appeldoorn, R. S. and Nemeth, M., Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs, 2014, 33(2), 313–328.
  • Baker, E. K., Puglise, K. A. and Harris, P. T. (eds), Mesophotic Coral Ecosystems – A Lifeboat for Coral Reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, 2016, p. 98.
  • Jokiel, P. L., Temperature stress and coral bleaching. In Coral Health and Diseases (eds Rosenberg, E. and Loya, Y.), SpringerVerlag, 2004, pp. 401–428.
  • Harris, P. T., Bridge, T. C., Beaman, R. J., Webster, J. M., Nichol, S. L. and Brooke, B. P., Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci., 2012, 70(2), 284–293.
  • Sinniger, F. and Harii, S., Studies on mesophotic coral ecosystems in Japan. In Coral Reef Studies of Japan, Springer, Singapore, 2018, pp. 149–162.
  • Huang, D., Benzoni, F., Fukami, H., Knowlton, N., Smith, N. D. and Budd, A. F., Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool. J. Linn. Soc., 2014, 171(2), 277–355.
  • Cairns, S. D., A revision of the shallow-water azooxanthellate Scleractinia of the Western Atlantic. Stud. Nat. Hist. Caribb., 2000, 75, 1–231.
  • Kitahara, M. V., Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull. Mar. Sci., 2007, 81, 497–518.
  • Laborel, J., Les peuplements de madréporaires des cotes tropicales du Brésil. Abidjan: Ann. del’Universitéd’Abidjan, 1970.
  • Neves, E., Silveira, F. L., Pinchon, M. and Johnsson, R., Cnidaria, Scleractinia, Siderastreidae, Siderastrea siderea (Ellis and Solander, 1786): Hartt expedition and the first record of a Caribbean siderastreid in tropical southwestern Atlantic. Check List, 2010, 6, 505–510.
  • Castro, C. B., Medeiros, M. S. and Loiola, L. L., Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J. Nat. Hist., 2010, 44, 763–827.
  • Pérez, C. D., Neves, B. M. and Oliveira, D. H., New records of octocorals (Cnidaria: Anthozoa) from the Brazilian coast. Aquat. Biol., 2011, 13(3), 203–214.
  • Fabricius, K. and Alderslade, P., Soft Corals and Sea Fans: A Comprehensive Guide to the Tropical Shallow-water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea, Australian Institute of Marine Science, Townsville, Australia, 2001, p. 264.
  • Antony Fernando, S., Monograph on Gorgonids (Sea Fans) of India, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 2011, pp. 1–145.
  • Smith, J. L. B., Smiths’ Sea Fishes, Struik, South Africa, 2003.
  • Froese, R. and Pauly, D. (eds), FishBase. World Wide Web electronic publication, 2017; www.fishbase.org, version (06/2017).
  • Newman, L. J. and Cannon, L. R. G., Marine Flatworms: The World of Polyclad Flatworms, CSIRO Publishing, Collinwood, Australia, 2003, p. 97.
  • Rasmussen, A. R., Sea snakes. In FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific (eds Carpenter, K. E. and Niem, V. H.), 2001, vol. 6, pp. 3987–4008.
  • Weinstein, D. K., Smith, T. B. and Klaus, J. S., Mesophotic bioerosion: variability and structural impact on US Virgin Island deep reefs. Geomorphology, 2014, 222, 14–24.
  • Reid, R. and Macintyre, I., Foraminiferal–algal nodules from the eastern Caribbean: growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios, 1988, 3, 424– 435.
  • Focke, J. and Gebelein, C., Marine lithification of reef rock and rhodolites at a fore-reef slope locality off Bermuda. Geol. Mijnbouw, 1978, 57, 163–171.
  • Ballantine, D. L., Ruiz, H. and Aponte, N. E., Changes to macroalgal species communities in shelf edge coral reef habitats in southwest Puerto Rico. In 11th International Coral Reef Symposiums, Abstr., Fort Lauderdale, Florida, USA, 7–11 July 2008, p. 424.
  • Rivero-Calle, S., Armstrong, R. A. and Soto-Santiago, F. J., Biological and physical characteristics of a mesophotic coral reef: Black Jack reef, Vieques, Puerto Rico. In Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, USA, 7–11 July 2008, pp. 574–578.
  • Bridge, T. C. L., Done, T. J., Beaman, R. J., Friedman, A., Williams, S. B., Pizarro, O. and Webster, J. M., Topography, substratum, and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs, 2011, 30, 143–153.
  • Littler, M. M., Littler, D. S. and Hanisak, M. D., Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol., 1991, 150, 163–182.
  • Amado-Filho, G. M. et al., Rhodolith beds are major CaCO biofactories in the tropical South West Atlantic. PLoS ONE, 2012, 7, e35171.
  • Iryu, Y., Nakamori, T., Matsuda, S. and Abe, O., Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sediment. Geol., 1995, 99, 243–258.
  • Agegian, C. R. and Abbott, I. A., Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. In Proceedings of the Fifth International Coral Reef Symposium, 1985, vol. 5, pp. 47–50.
  • Rooney, J. et al., Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs, 2010, 29, 361–367.
  • Luck, D., Forsman, Z. and Toonen, R., Polyphyly and hidden species among Hawai‘i’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). Peer J., 2013, e132.
  • Dinesen, Z. D., A revision of the coral genus Leptoseris (Scleractinia: Fungiina: Agariciidae). Mem. Queensl. Mus., 1980, 20(1), 181–235.
  • Hoeksema, B. W., Dautova, T. N., Savinkin, O. V., Tuan, V. S., Ben, H. X., Hoang, P. K. and Du, H. T., The westernmost record of the coral Leptoseris kalayaanensis in the South China Sea. Zool. Stud., 2010, 49, 325.
  • Hoeksema, B. W., Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae). ZooKeys, 2012, 228, 21–37.
  • Roark, E. B., Guilderson, T. P., Dunbar, R. B., Fallon, S. J. and Mucciarone, D. A., Extreme longevity in proteinaceous deep-sea corals. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5204–5208.
  • Jones, C. G., Lawton, J. H. and Shachak, M., Organisms as ecosystem engineers. In Ecosystem Management, Springer, New York, USA, 1994, pp. 130–147.
  • Hourigan, T. F., Lumsden, S. E., Dorr, G., Bruckner, A. W., Brooke, S. and Stone, R. P., State of deep coral ecosystems of the United States: introduction and national overview. In The State of Deep coral Ecosystems of the United States (eds Lumsden, S. E. et al.), National Oceanic and Atmospheric Administration, USA, 2007, pp. 1–64.
  • Brokovich, E. et al., Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar. Ecol. Prog. Ser., 2010, 399, 69–80.
  • Garcia-Sais, J. R., Reef habitats and associated sessile–benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs, 2010, 29(2), 277–288.
  • Lesser, M. P. and Slattery, M., Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions, 2011, 13, 1855–1868.
  • Darling, E. S., Green, S. J., O’Leary, J. K. and Côté, I. M., IndoPacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations. Biol. Invasions, 2011, 13(9), 2045–2051.
  • Kulbicki, M., Beets, J., Chabanet, P., Cure, K., Darling, E., Floeter, S. R. and Letourneur, Y., Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion. Mar. Ecol. Prog. Ser., 2012, 446, 189–205.
  • Gosliner, T., Behrens, D. W. and Williams, G. C., Coral Reef Animals of the Indo-Pacific: Animal Life from Africa to Hawaii Exclusive of the Vertebrates, Sea Challengers, Monterey, California, USA, 1996.
  • Jie, W. B., Kuo, S. C. and Mok, H. K., Re-description of Thysanozoon nigropapillosum (Polycladida: Pseudocerotidae) from the South China Sea, with observations on a novel pre-copulatory structure, sexual behaviour and diet. Raff Bull. Zool., 2014, 62, 764–770.
  • Feulner, G. R., Neubert, E. and Green, S., Land snails. In The Emirates: A Natural History (eds Hellyer, P. and Aspinall, S.), Trident Press, London, 2005, pp. 222–227.
  • Baker, E. K. and Harris, P. T., Habitat mapping and marine management. In Seafloor Geomorphology as Benthic Habitat: GeoHAB Atlas of Seafloor Geomorphic Features and Benthic Habitats, Elsevier, London, 2011, pp. 23–38.

Abstract Views: 241

PDF Views: 75




  • Benthic Communities of Mesophotic Coral Ecosystem off Puducherry, East Coast of India

Abstract Views: 241  |  PDF Views: 75

Authors

P. Laxmilatha
ICAR-Madras Research Centre of the Central Marine Fisheries Research Institute, Chennai 600 028, India
S. Jasmine
ICAR-Vizhinjam Research Centre of the Central Marine Fisheries Research Institute, Cochin 695 521, India
Miriam Paul Sreeram
ICAR-Central Marine Fisheries Research Institute, Cochin 682 018, India
Periasamy Rengaiyan
ICAR-Madras Research Centre of the Central Marine Fisheries Research Institute, Chennai 600 028, India

Abstract


The shallow coral reef ecosystems along the Indian coast are being threatened by anthropogenic global ocean warming and increased frequency of coral bleaching in the recent past. Identification and conservation of deeper reef habitats are essential as they serve as a source of larvae and livestock to replenish the shallow reef habitats. Information on the location and spatial extent of the mesophotic coral ecosystems (MCEs) and their biodiversity is poorly known in the continental shelf of the east coast of India. In this study, we have documented the species diversity of MCEs at a depth of 30–40 m off Puducherry along the east coast of India. In total, 12 species of corals, including 5 black corals and 16 octocorals, 4 species of sponges and 31 species of coral-associated benthopelagic fish species were recorded. Subergorgia sp. was the most dominant species of octocorals and found extensively as gorgonian forests. The MCEs reported in this study raise important questions about the origin and connectivity of the coral populations in this region to the other major coral reef ecosystems along the east coast. Understanding the physical processes and hydrographic features around the MCEs, off Puducherry will reveal more information about the distribution and colonization of coral communities and their vulnerability to changes in future.

Keywords


Benthic Communities, Gorgonian Forest, Mesophotic Coral Ecosystems, Reef Habitats.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi6%2F982-987