Open Access Open Access  Restricted Access Subscription Access

Adsorption of Orange-G dye by the Dried Powdered Biomass of Chlorella vulgaris Beijerinck


Affiliations
1 Department of Botany, Panjab University, Chandigarh 160 014, India
2 Department of Botany, CCSU, Meerut 250 004, India
 

Decolourization potential of microalgal biomass of an unicellular green alga (Chlorella vulgaris) was studied using different concentrations of Orange-G dye. Several parameters were also optimized for better removal of the tested dye from its aqueous solution. Langmuir and Freundlich models were tested for equilibrium studies and experimental data of the present study are better explained by the Freundlich model. FTIR data showed that five functional groups were probably involved in the adsorption of the dye. The biosorption process using algae (including C. vulgaris) offers an excellent biosystem for the remediation of final discharge of textile effluents.

Keywords

Adsorption, Chlorella vulgaris, Dyes, Infrared Spectrum.
User
Notifications
Font Size

  • Ramachandra, T. V., Rajasekaramurthy, C. and Ahalya, N., Restoration of Lakes and Wetlands, Allied Publishers, India, 2002, p. 426.
  • Singh, U. B., Ahluwalia, A. S., Jindal, R. and Sharma, C., Water quality assessment of some fresh water bodies supporting vegetation in and around Chandigarh (India), using multivariate statistical methods. Water Qual. Exp. Health, 2013, 5, 149–161.
  • Mohan, S. V., Rao, C. N., Prasad, K. K. and Karthikeyan, J., Treatment of simulated Reactive Yellow 22 (azo) dye effluents using Spirogyra species. Waste Manage., 2002, 22, 575–582.
  • Dotto, G. L., Lima, E. C. and Pinto, L. A., Biosorption of food dyes onto Spirulina pletensis nanoparticles: equilibrium isotherm and thermodynamic analysis. Bioresour. Technol., 2012, 103, 123–130.
  • Fu, Y. and Viraraghavan, T., Dye biosorption sites in Aspergillus niger. Bioresour. Technol., 2002, 82, 139–145.
  • Radha, K. V., Regupathi, I., Arunagiri, A. and Murugesan, T., Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem., 2005, 40, 3337–3345.
  • Bayramoglu, G., Celik, M. and Arica, Y., Biosorption of reactive blue 4 dye by native and treated fungus Phanerocheate chrysosporium: batch and continuous flow system studies. J. Hazard. Mater., 2006, 137, 1689–1697.
  • Horník, M., Suňovská, A., Partelová, D., Pipiška, M. and Augustín, J., Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa. Chem. Pap., 2013, 67, 254–264.
  • Aksu, Z., Application of biosorption for the removal of organic pollutants: a review. Process Biochem., 2005, 40, 997–1026.
  • Goncalves, I. M. C., Gomes, A., Brás, R., Ferra, M. I. A., Amorim, M. T. P. and Porter, R. S., Biological treatment of effluent containing textile dyes. J. Color Technol., 2000, 116, 393–397.
  • Saravanan, N., Kannadasan, T., Basha, C. H. and Manivasagan, V., Biosorption of textile dye using immobilized bacterial (Pseudomonas aeruginosa) and fungal (Phanerochate chrysosporium) cells. Am. J. Environ. Sci., 2013, 9, 377–387.
  • Natali, F. C., Limaa, E. C., Royer, B., Bach, M. V., Dotto, G. L., Pinto, L. A. A. and Calvete, T., Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J. Hazard. Mater., 2012, 241–242, 146–153.
  • Brookstein, D. S., Factors associated with textile pattern dermatitis caused by contact allergy to dyes, finishes, foams, and preservatives. Dermatol. Clin., 2009, 27, 309–322.
  • Alves de Lima, R. O., Bazo, A. P., Salvadori, D. M., Rech, C. M., de Palma Oliveira, D. and de AragãoUmbuzeiro, G., Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat. Res., 2007, 626, 53–60.
  • Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P. and Zanoni, M. V. B., Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. J. Hazard. Mater., 2010, 174, 694–699.
  • Slokar, Y. M. and Majcen Le Marechal. A., Methods of decoloration of textile wastewaters. Dyes Pigm., 1998, 37, 335–356.
  • Rathinam, A., Maharshi, B., Janardhanan, S. K., Jonnalagadda, R. R. and Nair, B. U., Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour. Technol., 2010, 101, 1466–1470.
  • Renuka, N., Sood, A., Ratha, S. K., Prasanna, R. and Ahluwalia, A. S., Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J. Appl. Phycol., 2013, 25, 1529–1537.
  • Renuka, N., Sood, A., Prasanna, R. and Ahluwalia, A. S., Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int. J. Environ. Sci. Technol., 2015, 12, 1443–1460.
  • Singh, U. B. and Ahluwalia, A. S., Algae: indespensible for sustainability of life. In Science Technology and Environment: Perspective and Trends (eds Ahluwalia, A. S. and Gaur, R.), Panjab University, Chandigarh, 2014, pp. 45–50.
  • Mehta, S. K. and Gaur, J. P., Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol., 2005, 25, 113–152.
  • Srinivasan, S. and Viraraghavan, T., Decolorization of dye wastewaters by biosorbents: a review. J. Environ. Manage., 2010, 190, 1915–1929.
  • Sood, A., Renuka, N., Prasanna, R. and Ahluwalia, A. S., Cyanobacteria as potential options for wastewater treatment. In Phytoremediation (eds Ansari, A. L. et al.), Springer, Cham, Switzerland, 2015, pp. 83–93.
  • Philipose, M. T., Chlorococcales, Indian Council of Agricultural Research, New Delhi, 1967, p. 365.
  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. Y., Generic assignments, strain histories and properties of pure culture of cyanobacteria. J. Gen. Microbiol., 1979, 111, 1–61.
  • Freundlich, H., Adsorption in solution. Z. Phys. Chem. Soc., 1906, 57, 384–470.
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc., 1918, 40, 1361–1368.
  • Nilsson, R., Nordlinder, R., Wass, U., Meding, B. and Belin, L. Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br. J. Ind. Med., 1993, 50, 65–70.
  • Vandevivere, P. C., Bianchi, R. and Verstratete, W., Treatment and reuse of waste water from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol., 1998, 72, 289–302.
  • Mantzavinos, D. and Psillakis, E., Enhancement of biodegradability of industrial wastewaters by chemical oxidation pretreatment. J. Chem. Technol. Biotechnol., 2004, 79, 431–454.
  • Singh, U. B. and Ahluwalia, A. S., Microalgae: a promising tool for carbon sequestration. Mitig. Adapt. Strat. Global Change, 2013, 18, 73–95.
  • Lim, S.-L., Chu, W.-L. and Phang, S.-M., Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol., 2010, 101, 7314–7322.
  • Phang, S. M., Miah, M. S., Yeoh, B. G. and Hashim, M. A., Spirulina cultivation in digested sago starch factory wastewater. J. Appl. Phycol., 2000, 12, 395–400.
  • Phang, S. M., Chui, Y. Y., Kumaran, G., Jeyaratnam, S. and Hashim, M. A., High rate algal ponds for treatment of wastewater: a case study for the rubber industry. In Photosynthetic Microorganisms in Environmental Biotechnology (eds Kojima, H. and Lee, Y. K.), Springer Verlag, Hong Kong, 2001, pp. 51–76.
  • Shelke, R., Bharad, J., Madje, B. and Ubale, M., Adsorption of acid dyes from aqueous solution onto the surface of acid activated Nirgudi leaf powder (AANLP): a case study Int. J. Chem. Tech. Res., 2010, 2, 2046–2051.
  • Hernández-Zamora, M., Cristiani-Urbina, E., Martínez-Jerónimo, F., Perales-Vela, H. V., Ponce-Noyola, T., Montes-Horcasitas Mdel, C. and Cañizares-Villanueva, R. O., Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environ. Sci. Pollut. Res., 2015, 22, 10811–10823.
  • Fourest, E. and Volesky, B., Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci. Technol., 1995, 30, 277–282.
  • Velmurugan, P., Kumar, V. R. and Dhinakaran, G., Dye removal from aqueous solution using low cost adsorbent. Int. J. Environ. Sci., 2011, 1, 1492–1503.
  • Giles, C. H., Smith, D. and Huitson, A., A general treatment and classification of the solute adsorption isotherms. I: theoretical. J. Colloid Interface Sci., 1974, 47, 755–765.
  • Silverstein, P. M., Bassler, G. C. and Morrill, T. C., Spectrometric Identification of Organic Compounds, John Wiley, New York, 1991, 5th edn.
  • Aksu, Z. and Tezer, S., Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem., 2005, 40, 1347–1361.
  • Seker, A., Shahwan, T., Eroğlu, A. E., Yilmaz, S., Demirel, Z. and Dalay, M., Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel (II) ions on Spirulina platensis. J. Hazard. Mater., 2008, 154, 973–980.
  • Duygu, D. Y., Udoh, A. U., Ozer, T. B., Akbulut, A., Erkaya, I. A., Yildiz, K. and Guler, D., Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotechnol., 2012, 11, 3817–3824.

Abstract Views: 235

PDF Views: 72




  • Adsorption of Orange-G dye by the Dried Powdered Biomass of Chlorella vulgaris Beijerinck

Abstract Views: 235  |  PDF Views: 72

Authors

Sunil Kumar
Department of Botany, Panjab University, Chandigarh 160 014, India
Amrik Singh Ahluwalia
Department of Botany, Panjab University, Chandigarh 160 014, India
Mayank Uday Charaya
Department of Botany, CCSU, Meerut 250 004, India

Abstract


Decolourization potential of microalgal biomass of an unicellular green alga (Chlorella vulgaris) was studied using different concentrations of Orange-G dye. Several parameters were also optimized for better removal of the tested dye from its aqueous solution. Langmuir and Freundlich models were tested for equilibrium studies and experimental data of the present study are better explained by the Freundlich model. FTIR data showed that five functional groups were probably involved in the adsorption of the dye. The biosorption process using algae (including C. vulgaris) offers an excellent biosystem for the remediation of final discharge of textile effluents.

Keywords


Adsorption, Chlorella vulgaris, Dyes, Infrared Spectrum.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi4%2F604-611