Open Access Open Access  Restricted Access Subscription Access

Estimation of Change in Forest Aboveground Carbon in Bhimbandh Wildlife Sanctuary, Bihar, India Between 2007 and 2016


Affiliations
1 Department of Civil Engineering, Haldia Institute of Technology, Hatiberia, Haldia 721 657, India
 

This study analyses the status and temporal dynamics of the tropical forest aboveground carbon (AGC) stocks. We used an integrated geospatial approach incorporating satellite synthetic aperture radar (SAR) data with a continuous forest inventory over a tenyear period utilizing statistical up-scaling procedure over a tropical deciduous forest of India as a case study. Logarithmic regression relationship was observed as the best fit model to derive the aboveground biomass from SAR backscatter coefficients with an absolute model accuracy of 80.61%. This was further employed to model the change in forest AGC stock from 2007 to 2016. Results show a significant decrease in carbon stock and the release of 918.5 Gg of carbon in the atmosphere from deforestation and forest degradation in the study area within the ten-year period.

Keywords

Carbon, Forest Aboveground Biomass, Regression, Synthetic Aperture Radar.
User
Notifications
Font Size

  • Bala, G., Digesting 400 ppm for global mean CO2 concentration. Curr. Sci., 2013, 104(11), 1471–1472.
  • Sinha, S. et al., Accounting tropical forest carbon stock with synergistic use of space-borne ALOS PALSAR and COSMO-Skymed SAR sensors. Trop. Ecol., 2019; doi:10.1007/s42965-019-00011-6.
  • Günlü, A. and Ercanlı, İ., Artificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey. Geocarto. Int., 2018; doi:10.1080/10106049.2018.1499817.
  • Ganeshamurthy, A. N., Ravindra, V., Rupa, T. R. and Bhat, P. M., Carbon sequestration potential of mango orchards in tropical hot and humid climate of Konkan region of India. Curr. Sci., 2019; https://www.currentscience.ac.in/cs/php/forthcoming/2019/29978.pdf (accessed on 18 March 2019).
  • Sharma, L. K., Nathawat, M. S. and Sinha, S., Top-down and bottom-up inventory approach for aboveground forest biomass and carbon monitoring in REDD framework using multi-resolution satellite data. Environ. Monit. Assess., 2013, 185(10), 8621–8637.
  • Kumar, P., Sharma, L. K., Pandey, P. C., Sinha, S. and Nathawat, M. S., Geospatial strategy for tropical forest–wildlife reserve biomass estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sensing, 2013, 6(2), 917–923.
  • De Sy, V., Herold, M., Archard, F., Asner, G. P., Held, A., Kellndorfer, J. and Verbesselt, J., Synergies of multiple remote sensing data sources for REDD+ monitoring. Curr. Opin. Environ. Sustain., 2012, 4(6), 696–706.
  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E., A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth, 2016, 9(1), 63–105.
  • Lu, D., The potential and challenge of remote sensing‐based biomass estimation. Int. J. Remote Sensing, 2006, 27(7), 1297–1328.
  • Sinha, S., Jeganathan, C., Sharma, L. K. and Nathawat, M. S., A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol., 2015, 12(5), 1779–1792.
  • Sinha, S., Jeganathan, C., Sharma, L. K., Nathawat, M. S., Das, A. K. and Mohan, S., Developing synergy regression models with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest biomass. J. Earth Syst. Sci., 2016, 125(4), 725–735.
  • Sinha, S. et al., Regression-based integrated bi-sensor SAR data model to estimate forest carbon stock. J. Indian Soc. Remote Sensing, 2019; doi:10.1007/s12524-019-01004-7.
  • Pandey, U., Kushwaha, S. P. S., Kachhwaha, T. S., Kunwar, P. and Dadhwal, V. K., Potential of Envisat ASAR data for woody biomass assessment. Trop. Ecol., 2010, 51(1), 117–124.
  • Sinha, S., Santra, A., Sharma, L. K., Jeganathan, C., Nathawat, M. S., Das, A. K. and Mohan, S., Multi-polarized Radarsat-2 satellite sensor in assessing forest vigor from above ground biomass. J. For. Res., 2018, 29(4), 1139–1145.
  • Omar, H., Misman, M. A. and Kassim, A. R., Synergetic of PALSAR-2 and Sentinel-1A SAR polarimetry for retrieving aboveground biomass in Dipterocarp forest of Malaysia. Appl. Sci., 2017, 7(7), 675.
  • Sinha, S. et al., Multi-frequency SAR capabilities for forest biomass and carbon inventory for REDD monitoring. In Proceedings of the 38th Asian Conference on Remote Sensing (ACRS-2017), 23–27 October 2017, New Delhi, Asian Association on Remote Sensing; https://a-a-r-s.org/proceeding/ACRS2017/ID_753_1652/967.pdf
  • Torbick, N., Ledoux, L., Salas, W. and Zhao, M., Regional mapping of plantation extent using multisensory imagery. Remote Sensing, 2016, 8(3), 236.
  • Rahman, M. M. and Sumantyo, J. T. S., Retrieval of tropical forest biomass information from ALOS PALSAR data. Geocarto Int., 2012, 28(5), 382–403.
  • Askne, J. I. H., Soja, M. J. and Ulander, L. M. H., Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model. Remote Sensing Environ., 2017, 196, 265–278.
  • Englhart, S., Keuck, V. and Siegert, F., Aboveground biomass retrieval in tropical forests – The potential of combined X- and Lband SAR data use. Remote Sensing Environ., 2011, 115(5), 1260–1271.
  • Ghasemi, N., Sahebi, M. R. and Mohammadzadeh, A., A review on biomass estimation methods using synthetic aperture radar data. Int. J. Geomat. Geosci., 2011, 1(4), 776–788.
  • Nizalapur, V., Jha, C. S. and Madugundu, R., Estimation of above ground biomass in Indian tropical forested area using multifrequency DLR-ESAR data. Int. J. Geomat. Geosci., 2010, 1(2), 167–178.
  • Montesano, P. M. et al., The uncertainty of biomass estimates from LiDAR and SAR across a boreal forest structure gradient. Remote Sensing Environ., 2014, 154, 398–407.
  • Sinha, S., Sharma, L. K. and Nathawat, M. S., Integrated geospatial techniques for land-use/land-cover and forest mapping of deciduous Munger forests (India). Univ. J. Environ. Res. Technol., 2013, 3(2), 190–198.
  • Singh, I. J., Mizanurahman, M. and Kushwaha, S. P. S., Assessment of effect of settlements on growing stock in Thano range of Dehradun forest division using RS & GIS. J. Indian Soc. Remote Sensing, 2006, 34(2), 209–217.
  • Kale, M. P., Ravan, S. A., Roy, P. S. and Singh, S., Patterns of carbon sequestration in forests of Western Ghats and study of applicability of remote sensing in generating carbon credits through afforestation/reforestation. J. Indian Soc. Remote Sensing, 2009, 37(3), 457–471.
  • Shimada, M., Isoguchi, O., Tadono, T. and Isono, K., PALSAR radiometric and geometric calibration. IEEE Trans. Geosci. Remote Sensing, 2009, 47(12), 3915–3932.

Abstract Views: 184

PDF Views: 58




  • Estimation of Change in Forest Aboveground Carbon in Bhimbandh Wildlife Sanctuary, Bihar, India Between 2007 and 2016

Abstract Views: 184  |  PDF Views: 58

Authors

Suman Sinha
Department of Civil Engineering, Haldia Institute of Technology, Hatiberia, Haldia 721 657, India
Abhisek Santra
Department of Civil Engineering, Haldia Institute of Technology, Hatiberia, Haldia 721 657, India

Abstract


This study analyses the status and temporal dynamics of the tropical forest aboveground carbon (AGC) stocks. We used an integrated geospatial approach incorporating satellite synthetic aperture radar (SAR) data with a continuous forest inventory over a tenyear period utilizing statistical up-scaling procedure over a tropical deciduous forest of India as a case study. Logarithmic regression relationship was observed as the best fit model to derive the aboveground biomass from SAR backscatter coefficients with an absolute model accuracy of 80.61%. This was further employed to model the change in forest AGC stock from 2007 to 2016. Results show a significant decrease in carbon stock and the release of 918.5 Gg of carbon in the atmosphere from deforestation and forest degradation in the study area within the ten-year period.

Keywords


Carbon, Forest Aboveground Biomass, Regression, Synthetic Aperture Radar.

References





DOI: https://doi.org/10.18520/cs%2Fv117%2Fi6%2F1090-1094