Open Access Open Access  Restricted Access Subscription Access

Layered Pt.ZSM-5-C by Greener Chemical Reduction for Catalysing Fuel Cell Reactions


Affiliations
1 Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur 799 120, India
2 Integrated Science Education and Research Centre, Visva-Bharati, Santiniketan 731 235, India
 

Metal ion exchanged catalysts are known now and are successfully used for many catalytic processes. But supported metal nanoparticles on the zeolite bed, and their use as catalysts is still under experimental probe. ZSM-5 supported platinum nanoparticles are synthesized from in-situ chemical reduction of platinum chloride solution in the presence of zeolite, by zinc dust chemical reduction method which is comparatively ‘greener’. This platinum nanoparticle loaded ZSM-5 is studied in the role of catalyst in electrooxidation of methanol and ethanol using Nafion-117 to bind the catalyst on carbon felt. The platinum nanoparticle loaded ZSM-5 is found to be a better catalyst compared to pure ZSM-5 and pure platinum. This greener chemical reduction method can be used as the results show that zeolite modified catalysts are as good as those prepared by other less environment friendly methods, if not better.

Keywords

Chemical Reduction, Electro-Oxidation, Platinum Nanoparticles, Zeolite Modified Electrode, ZSM-5.
User
Notifications
Font Size

  • Tang, H., Chen, J., Nie, L., Liu, D., Deng, W., Kuang, Y. and Yao, S., High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs). J. Colloid. Interface. Sci., 2004, 269(1), 26–31.
  • He, Z., Chen, J., Liu, D., Tang, H., Deng, W. and Kuang, Y., Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation. Mater. Chem. Phys., 2004, 85(2), 396–401.
  • Rajesh, B., Karthik, V., Karthikeyan, S., Thampi, K. R., Bonard, J. M. and Viswanathan, B., Pt–WO 3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells. Fuel, 2002, 81(17), 2177–2190.
  • Wang, M. Y., Chen, J. H., Fan, Z., Tang, H., Deng, G. H., He, D. L. and Kuang, Y. F., Ethanol electro-oxidation with Pt and Pt–Ru catalysts supported on carbon nanotubes. Carbon, 2004, 42(15), 3257–3260.
  • Neto, A. O., Giz, M. J., Perez, J., Ticianelli, E. A. and Gonzalez, E. R., The electro-oxidation of ethanol on Pt–Ru and Pt–Mo particles supported on high-surface-area carbon. J. Electrochem. Soc., 2002, 149(3), A272–A279.
  • Leger, J. M., Rousseau, S., Coutanceau, C., Hahn, F. and Lamy, C., How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol. Electrochim. Acta, 2005, 50(25), 5118–5125.
  • Daas, B. M. and Ghosh, S., Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation – a review. J. Electroanal. Chem., 2016, 783, 308–315.
  • Goncalves, F., Medeiros, P. R., Eon, J. G. and Appel, L. G., Active sites for ethanol oxidation over SnO 2-supported molybdenum oxides. Appl. Catal. A Gen., 2000, 193(1), 195–202.
  • de Souza, J. P., Queiroz, S. L., Bergamaski, K., Gonzalez, E. R. and Nart, F. C., Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J. Phys. Chem. B., 2002, 106(38), 9825–9830.
  • Spinace, E. V., Linardi, M. and Neto, A. O., Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electro-catalysts. Electrochem. Commun., 2005, 7(4), 365–369.
  • Xu, C. and Shen, P. K., Enhanced activity for ethanol electrooxidation on Pt-MgO/C catalysts. Electrochem. Commun., 2005, 7(12), 1305–1308.
  • Xu, C. and Shen, P. K., Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chem. Commun., 2004, 19, 2238–2239.
  • Xu, C. and Shen, P. K., Electrochemical oxidation of ethanol on Pt-CeO2/C catalysts. J. Power Sources, 2005, 142(1), 27–29.
  • Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagno, S., Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Appl. Catal. B, 2000, 28(3), 245–251.
  • Burgi. T., Combined in situ attenuated total reflection infrared and UV–Vis spectroscopic study of alcohol oxidation over Pd/Al2O3. J. Catal., 2005, 229(1), 55–63.
  • Liu, B., Chen, J. H., Zhong, X. X., Cui, K. Z., Zhou, H. H. and Kuang, Y. F., Preparation and electrocatalytic properties of Pt–SiO2 nanocatalysts for ethanol electrooxidation. J. Colloid. Interface. Sci., 2007, 307(1), 139–144.
  • Beck, J. S. et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Sci., 1992, 114(27), 10834–10843.
  • Rolison, D. R., Zeolite-modified electrodes and electrode-modified zeolites. Chem. Rev., 1990, 90(5), 867–878.
  • Coombs, D. S., Recommended nomenclature for zeolite minerals, report of the subcommittee on zeolites of the international mineralogical association, Commission on new minerals and mineral names. Can. Mineral., 1997, 35, 1571–1606.
  • Sun, T. and Seff, K., Silver clusters and chemistry in zeolites. Chem. Rev., 1994, 94(4), 857–870.
  • Pang, H., Chen, J., Yang, L., Liu, B., Zhong, X. and Wei, X., Ethanol electrooxidation on Pt/ZSM-5 zeolite-C catalyst. J. Solid. State. Electrochem., 2008, 12(3), 237–243.
  • Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397), 710–712.
  • Belaya, L. A., Doronin, V. P., Sorokina, T. P. and Gulyaeva, T. I., Thermal stability of zeolites Y and ZSM-5 in matrices of various compositions. Russ. J. Appl. Chem., 2009, 82(2), 236–242.
  • Zhdanov, S. P., Feoktistova, N. N., Kozlova, N. I. and Polyakova, I. G., Thermal stability of high-silica zeolites of the ZSM-5 family. Bull. Acad. Sci. USSR, Divn. Chem. Sci., 1985, 34(12), 2463–2466.
  • Parker, L. M., Bibby, D. M. and Patterson, J., Thermal decomposition of ZSM-5 and silicalite precursors. Zeolites, 1984, 4(2), 168–174.
  • Mentus, S., Mojovic, Z. and Radmilovic, V., The use of NaX zeolite as a template to obtain a mono-atomic Pt dispersion by impregnation with Pt(II) acetylacetonate/acetone solution. J. Serb. Chem. Soc., 2009, 74(10), 1113–1123.
  • Mojovic, Z., Bankovic, P., Jovic-Jovicic, N., Milutinovic-Nikolic, A., Rabi-Stankovic, A. A. and Jovanovic, D., Electrocatalytic behavior of nickel impregnated zeolite electrode. Int. J. Hydrogen Energy, 2011, 36(21), 13343–13351.
  • Mojovic, Z., Mudrinic, T., Rabi-Stankovic, A. A., Ivanovic-Sasic, A., Marinovic, S., Zunic, M. and Jovanovic, D., Methanol electrooxidation on PtRu modified zeolite X. Sci. Sinter., 2013, 45(1), 89–96.
  • Yao, J., Yao, Y. and Mirzaii, H., Proton modified Pt zeolite fuel cell electrocatalysts. In Renewable Energy in the Service of Mankind, Springer, London, 2014, vol. 1.
  • Zhang, Q., Li, Z., Wang, S., Xing, W., Yu, R. and Yu, X., The electro-oxidation of dimethyl ether on platinum-based catalyst. Electrochim. Acta, 2008, 53(28), 8298–8304.
  • Samant, P. V. and Fernandes, J. B., Enhanced activity of Pt(HY) and Pt-Ru(HY) zeolite catalysts for electrooxidation of methanol in fuel cells. J. Power Sourc., 2004, 125, 172–177.
  • Stoeppler, M., Hazardous Metals in the Environment, Elsevier, 1992, vol. 12.
  • Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R. and Hyde, E. K., Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. JACS, 1953, 75(1), 215–219.
  • Iwasita, T., Methanol and CO electrooxidation. In Handbook of Fuel Cells – Fundamentals, Technology and Applications. Electrocatalysis (eds Vielstich, W., Gasteiger, H. A. and Lamm, A.), Wiley, New Jersey, 2003, vol. 2, pp. 603–624.
  • Li, H., Kang, D., Wang, H. and Wang, R., Carbon-supported Pt-RuCo nanoparticles with low-noble-metal content and superior catalysis for ethanol oxidization. Int. J. Electrochem. Sci., 2011, 6(4), 1058–1065.
  • Wei, X. and Chen, D., Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique. Mater. Lett., 2006, 60, 823–827.
  • Hu, J. Q., Ma, X. L., Xie, Z. Y., Wong, N. B., Lee, C. S. and Lee, S. T., Characterization of zinc oxide crystal whiskers grown by thermal evaporation. Chem. Phys. Lett., 2001, 344(1), 97–100.
  • Luo, T., Liu, J., Chen, L., Zeng, S. and Qian, Y., Synthesis of helically coiled carbon nanotubes by reducing ethyl ether with metallic zinc. Carbon, 2005, 43(4), 755–759.
  • Shen, Y., Xiao, K., Xi, J. and Qiu, X. X., Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sourc., 2015, 278, 235–244.
  • Klug, H. P. and Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 1974, 2nd edn.
  • Burton, A. W., Ong, K., Rea, T. and Chan, I. Y., On the estimation of average crystallite size of zeolites from the Scherrer equation, a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous. Mesoporous. Mater., 2009, 117(1), 75–90.
  • Monshi, A., Foroughi, M. R. and Monshi, M. R., Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano. Sci. Eng., 2012, 2(3), 154–160.
  • Ye, W., Zhang, X., Chen, Y., Du, Y., Zhou, F. and Wang, C., Pulsed electrodeposition of reduced graphene oxide on glass carbon electrode as an effective support of electrodeposited Pt microspherical particles, nucleation studies and the application for methanol electro-oxidation. Int. J. Electrochem. Sci., 2013, 8, 2122–2139.
  • Sun, S. H., Yang, D. Q., Villers, D., Zhang, G. X., Sacher, E. and Dodelet, J. P., Template‐ and surfactant‐free room temperature synthesis of self‐assembled 3D Pt nanoflowers from single‐crystal nanowires. Adv. Mater., 2008, 20(3), 571–574.
  • Rodriguez, J. M. D., Melián, J. A. H. and Peña, J. P., Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. J. Chem. Educ., 2000, 77(9), 1195–1197.
  • Lukaszewski, M., Soszko, M. and Czerwinski, A., Electrochemical methods of real surface area determination of noble metal electrodes – an overview. Int. J. Electrochem. Sci., 2016, 11, 4442–4469.
  • Watt-Smith, M. J., Friedrich, J. M., Rigby, S. P., Ralph, T. R. and Walsh, F. C., Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D Appl. Phys., 2008, 41(17), 174004.
  • Singh, B., Murad, L., Laffir, F., Dickinson, C. and Dempsey, E., Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media. Nanoscale, 2011, 3(8), 3334–3349.
  • Abdelkader, A. M., Kilby, K. T., Cox, A. and Fray, D. J., DC voltammetry of electro-deoxidation of solid oxides. Chem. Rev., 2013, 113(5), 2863–2886.
  • Heinze, J., Cyclic voltammetry – ‘electrochemical spectroscopy’, new analytical methods. Angew Chem. Int. Ed. Engl., 1984, 23, 831–847.
  • Bard, A. J. and Faulkner, L. R., Electrochemical Methods, Fundamentals and Applications, Wiley, New Jersey, 2000, 2nd edn.
  • Burstein, G. T., A century of tafel’s equation, 1905–2005 – a commemorative issue of corrosion science. Corros. Sci., 2005, 47(12), 2858–2870.
  • Soghomoniana, V. and Heremans, J. J., Characterization of electrical conductivity in a zeolitelike material. Appl. Phys. Lett., 2009, 95, 152112, 1–3.
  • Daas, B. M. and Ghosh, S., Electro-oxidation of methanol and ethanol catalyzed by Pt/ZSM-5/C. Electroanalysis, 2017, 29(11), 2516–2525.
  • Song, Y. et al., High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. Chemistry Select, 2016, 1(19), 6055–6061.

Abstract Views: 278

PDF Views: 75




  • Layered Pt.ZSM-5-C by Greener Chemical Reduction for Catalysing Fuel Cell Reactions

Abstract Views: 278  |  PDF Views: 75

Authors

Basu M. Daas
Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur 799 120, India
Susanta Ghosh
Integrated Science Education and Research Centre, Visva-Bharati, Santiniketan 731 235, India

Abstract


Metal ion exchanged catalysts are known now and are successfully used for many catalytic processes. But supported metal nanoparticles on the zeolite bed, and their use as catalysts is still under experimental probe. ZSM-5 supported platinum nanoparticles are synthesized from in-situ chemical reduction of platinum chloride solution in the presence of zeolite, by zinc dust chemical reduction method which is comparatively ‘greener’. This platinum nanoparticle loaded ZSM-5 is studied in the role of catalyst in electrooxidation of methanol and ethanol using Nafion-117 to bind the catalyst on carbon felt. The platinum nanoparticle loaded ZSM-5 is found to be a better catalyst compared to pure ZSM-5 and pure platinum. This greener chemical reduction method can be used as the results show that zeolite modified catalysts are as good as those prepared by other less environment friendly methods, if not better.

Keywords


Chemical Reduction, Electro-Oxidation, Platinum Nanoparticles, Zeolite Modified Electrode, ZSM-5.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi09%2F1878-1884