Open Access Open Access  Restricted Access Subscription Access

Spectral Modelling of Estuarine Coloured Dissolved Organic Matter


Affiliations
1 Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
2 Marine Biological Laboratory, Andhra University, Visakhapatnam 530 003, India
 

Measuring coloured dissolved organic matter (CDOM) holds advantage over dissolved organic carbon (DOC) determination, as it can be remotely estimated unlike the latter, for which it can potentially act as a proxy. The CDOM absorbance, by definition, falls exponentially with wavelength of light (λ) in the ultravioletvisible region. Investigating over 800 absorption spectra of water samples from the tropical monsoonal Godavari estuary and the Chilika brackish water lagoon, we found that the spectral slope (S) of the 330–440 nm region (S330–440) is best suited to retrieve CDOM and its exponential character.

Keywords

CDOM, Chilika Lagoon, Godavari Estuary, Spectral Slope, S330–440, UV-Visible Absorbance.
User
Notifications
Font Size

  • Coble, P. G., Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev., 2007, 107, 402–418.
  • Fichot, C. G. and Benner, R., A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Letts., 2011, 38(3), doi:10.1029/2010GL046152.
  • Rochelle-Newall, E. J. and Fisher, T. R., Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar. Chem., 2002, 77(1), 23–41; doi:10.1016/S0304-4203(01)00073-1.
  • Asmala, E., Autio, R., Kaartokallio, H., Pitkanen, L., Stedmon, C. A. and Thomas, D. N., Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeoscience, 2013, 10, 6969–6986.
  • Nelson, N. B. and Siegel, D. A., The global distribution and dynamics of chromophoric dissolved organic matter. Ann. Rev. Mar. Sci., 2013, 5, 447–476.
  • Harvey, E. T., Kratzer, S. and Andersson, A., Relationships between coloured dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambio, 44(3), 2015, S392–S401; doi:10.1007/s13280-015-0658-4.
  • Goncalves-Araujo, R., Stedmon, C. A. and Heim, B., Dubinenkov, I., Kraberg, A., Moiseev, D. and Bracher, A., From fresh to marine waters: characterization and fate of dissolved organic matter in the Lena River delta region, Siberia. Front. Mar. Sci., 2015, 2, 108; doi: 10.3389/fmars.2015.00108.
  • Siegel, D. A., Maritorena, S., Nelson, N. B., Behrenfeld, M. J. and McClain, C. R., Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere. Geophys. Res. Lett., 2005, 32(20), L20605–L20608; doi:10.1029/2005GL024310.
  • Jerlov, N. G., Optical Oceanography, Elsevier, New York, 1976, p. 194.
  • Shifrin, K. S., Physical Optics of Ocean Water American Institute of Physics, College Park, MD, 1988, p. 285.
  • Twardowski, M. S., Boss, E., Sullivan, J. M. and Donaghay, P. L., Modelling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem., 2004, 89, 69–88.
  • Stedmon, C. A. and Markager, S., Behavior of the optical properties of coloured dissolved organic matter under conservative mixing. Estuar. Coastal Shelf Sci., 2003, 57, 973–979.
  • Bricaud, A., Morel, A. and Prieur, L., Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr., 1981, 26(1), 43–53.
  • Bowers, D. G. and Brett, H. L., The relationship between CDOM and salinity in estuaries: An analytical and graphical solution. J. Mar. Syst., 2008, 73(1–2), 1–7; http://doi.org/10.1016/j.jmarsys.2007.07.001.
  • Clark, C. D., Litz, L. P. and Grant, S. B., Salt marshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters. Limnol. Oceanogr., 2008, 53(5), 1923–1933.
  • Hojerslev, N. K. and Aas, E., Spectral light absorption by yellow substance in the Kattegat–Skagerrak area. Oceanologia, 2001, 43, 39–60.
  • Cory, R. M. and McKnight, D. M., Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol., 2005, 39(21), 8142–8149.
  • Rao, K. L., India’s Water Wealth, Its Assessment, Uses and Projections, Orient Longman, New Delhi, 1975.
  • Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C. J., Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol., 1999, 159, 3–30.
  • Sarkar, S., Bhattacharya, A., Bhattacharya, A., Satpathy, K., Mohanty, A. and Panigrahi, S., Chilika lake. In Encyclopedia of lakes and reservoirs (eds Bengtsson, L., Herschy, R. W. and Fairbridge, R. W.), Springer, 2012, vol. 953, pp. 148–155.
  • Shank, C. G., Nelson, K. and Montagna, K., Importance of CDOM distribution and photo reactivity in a shallow Texas Estuary. Estuar. Coast, 2009, 32, 661–677.
  • Chari, N. V. H. K., Sarma, N. S., Pandi, S. R. and Murthy, K. N., Seasonal and spatial constraints of fluorophores in the midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra. Estuar. Coastal Shelf Sci., 2012, 100, 162–171.
  • Pandi, S. R. et al., Contrasting phytoplankton community structure and associated light absorption characteristics of the western Bay of Bengal. Ocean Dynam., 2014, doi:10.1007/s10236-013-0678-1.
  • Chiranjeevulu, G. et al., Colored dissolved organic matter signature and phytoplankton response in a coastal ecosystem during mesoscale cyclonic (cold core) eddy. Mar. Environ. Res., 2014, 98, 49–59; doi:10.1016/j.marenvres.2014.03.002.
  • Edwards, A. C., Hooda, P. S. and Cook, Y., Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int. J. Environ. Anal. Chem., 2001, 80(1), 49–59; doi:10.1080/03067310108044385.
  • Chari, N. V. H. K., Keerthi, S., Sarma, N. S., Pandi, S. R., Chiranjeevulu, G., Kiran, R. and Koduru, U., Fluorescence and absorption characteristics of dissolved organic matter excreted by phyto-plankton species of western Bay of Bengal under axenic laboratory condition. J. Exp. Mar. Biol. Ecol., 2013, 445, 148–155.
  • Hulatt, C. J., Thomas, D. N., Bowers, D. G., Norman, L. and Zhang, C., Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar. Coastal Shelf Sci., 2009, 84, 147–153.
  • Helms, J., Stubbins, A., Ritchie, J. D., Minor, E., Kieber, D. J. and Mopper, K., Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr., 2008, 53(3), 955–969.
  • Loiselle, S. A., Bracchini, L., Dattilo, A. M., Ricci, M., Tognazzi, A., Cezar, A. and Rossi, C., The optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol. Oceanogr., 2009, 54(2), 590–597; doi:10.4319/lo.2009.54.2.0590.
  • Del Vecchio, R. and Blough, N., Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight, Mar. Chem., 2004, 89, 169–187.
  • Massicotte, P. and Markager S., Using a Gaussian decomposition approach to model absorption spectra of chromophoric dissolved organic matter, Mar. Chem., 2016, 180, 24–32.

Abstract Views: 285

PDF Views: 78




  • Spectral Modelling of Estuarine Coloured Dissolved Organic Matter

Abstract Views: 285  |  PDF Views: 78

Authors

Nittala S. Sarma
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
Sudarsana Rao Pandi
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
N. V. H. K. Chari
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
Gundala Chiranjeevulu
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
Rayaprolu Kiran
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
K. Shiva Krishna
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
D. Bhaskara Rao
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
P. Venkatesh
Marine Chemistry Laboratory, Andhra University, Visakhapatnam 530 003, India
B. Charan Kumar
Marine Biological Laboratory, Andhra University, Visakhapatnam 530 003, India
A. V. Raman
Marine Biological Laboratory, Andhra University, Visakhapatnam 530 003, India

Abstract


Measuring coloured dissolved organic matter (CDOM) holds advantage over dissolved organic carbon (DOC) determination, as it can be remotely estimated unlike the latter, for which it can potentially act as a proxy. The CDOM absorbance, by definition, falls exponentially with wavelength of light (λ) in the ultravioletvisible region. Investigating over 800 absorption spectra of water samples from the tropical monsoonal Godavari estuary and the Chilika brackish water lagoon, we found that the spectral slope (S) of the 330–440 nm region (S330–440) is best suited to retrieve CDOM and its exponential character.

Keywords


CDOM, Chilika Lagoon, Godavari Estuary, Spectral Slope, S330–440, UV-Visible Absorbance.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi08%2F1762-1767