Open Access Open Access  Restricted Access Subscription Access

Understanding the Linkages between Climate Change and Forest


Affiliations
1 Indian Institute of Forest Management, Bhopal 462 003, India
2 Centre for Climate Change Studies, Indian Institute of Forest Management, Bhopal 462 003, India
3 Indian Institute of Remote Sensing, Dehradun 248 001, India
4 School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
5 Indian Space Research Organisation, Bengaluru 560 094, India
 

The present study reviews the application of various regional climate models and remote sensing techniques to understand and define impacts of climate change on the forest resources with specific reference to India. It illustrates the potentials and limitations of regional climate models, vegetation models and remote sensing techniques like normalized difference vegetation index time-series analysis, change detection method and phenological attributes in assessing and monitoring the impacts of climate change on vegetation. The study recommends that regional climate models and remote sensing techniques need to be integrated in tandem for understanding the present and future impacts of climate change on forest ecosystems. This could help to improve the accuracy and prediction, which can contribute to planning effective adaptation strategies in the forestry sector.

Keywords

Climate Change, Forest, Regional Climate Models, Remote Sensing.
User
Notifications
Font Size

  • Stern, N., The Economics of Climate Change: The Stern Review, Cambridge University Press, Cambridge, UK, 2007.
  • Edenhofer, O. et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment, Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, 2014.
  • Bellassen, V. and Luyssaert, S., Carbon sequestration: managing forests in uncertain times. Nature, 2014, 506(7487), 153–155.
  • Shriner, D. S. and Street, R. B., The Regional Impacts of Climate Change, Cambridge University Press, New York, 1998, pp. 253–330.
  • Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J. and Bartlein, P. J., Global change in forests: responses of species, communities, and biomes interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience, 2001, 51(9), 765–779.
  • Ravindranath, N. H., Joshi, N. V., Sukumar, R. and Saxena, A., Impact of climate change on forests in India. Curr. Sci., 2006, 90(3), 354–361.
  • Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. and Thomas, C. D., Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333(6045), 1024–1026.
  • Dale, V. H., Tharp, M. L., Lannom, K. O. and Hodges, D. G., Modelling transient response of forests to climate change. Sci. Total Environ., 2010, 408(8), 1888–1901.
  • Hanewinkel, M., Hummel, S. and Cullmann, D. A., Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. For. Ecol. Manage., 2010, 259(4), 710–719.
  • Betts, R. A., Malhi, Y. and Roberts, J. T., The future of the Amazon: new perspectives from climate, ecosystem and social sciences. Philos. T. R. Soc. London, Ser. B, 2008, 363(1498), 1729–1735.
  • Bonan, G. B., Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320(5882), 1444–1449.
  • Goldstein, A. H., Hultman, N. E., Fracheboud, J. M., Bauer, M. R., Panek, J. A., Xu, M. and Baugh, W., Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agric. For. Meteorol., 2000, 101(2), 113–129.
  • Hanninen, H., Climate warming and the risk of frost damage to boreal forest trees: identification of critical eco-physiological traits. Tree Physiol., 2006, 26(7), 889–898.
  • Fearnside, P. M.. Plantation forestry in Brazil: the potential impacts of climatic change. Biomass Bioenerg., 1999, 16(2), 91–102.
  • Canadell, J. G. and Raupach, M. R., Managing forests for climate change mitigation. Science, 2008, 320(5882), 1456–1457.
  • Sykes, M. T., Prentice, I. C. and Cramer, W., A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr., 1996, 23, 203–233.
  • INCCA, Indian Network for Climate Change Assessment. Report 2. Climate Change and India: a 4  4 Assessment – a sectoral and regional analysis for 2030s. Ministry of Environment and Forests, Government of India. November, 2010.
  • Sukhdev, P., Costing the earth. Nature, 2009, 462(7271), 277.
  • Joshi, P. K., Rawat, A., Narula, S. and Sinha, V., Assessing impact of climate change on forest cover type shifts in Western Himalayan eco-region. J. For. Res., 2012, 23(1), 75–80.
  • Chakraborty, A., Joshi, P. K., Ghosh, A. and Areendran, G., Assessing biome boundary shifts under climate change scenarios in India. Ecol. Indic., 2013, 34, 536–547.
  • Panigrahy, S., Anitha, D., Kimothi, M. M. and Singh, S. P., Timberline change detection using topographic map and satellite imagery. Trop. Ecol., 2010, 51(1), 87–91.
  • Gopalakrishnan, R., Jayaraman, M., Bala, G. and Ravindranath, N. H., Climate change and Indian forests. Curr. Sci., 2011, 101(3), 348–355.
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P. and Meehl, G. A., The next generation of scenarios for climate change research and assessment. Nature, 2010, 463(7282), 747–756.
  • Ghosh, S. and Mujumdar, P. P., Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Curr. Sci., 2006, 90(3), 396–404.
  • Parry, M. L. (ed.), Climate Change 2007 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Vol. 4, 2007.
  • Jones, N., Climate assessments: 25 years of the IPCC. Nature, 2013, 501, 298–299.
  • Hennessey, K. J., Whetton, P. H., Katzfey, J. J., McGregor, J. L., Jones, R. N., Page, C. M. and Nguyen, K. C., Fine resolution climate change scenarios for new South Wales. Annual Report. CSIRO, Australia, 1998, p. 48.
  • Hay, L. E., Wilby, R. L. and Leavesley, G. H., A comparison of delta changes and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc., 2000, 36, 387–397.
  • Thomson, A. M., Brown, R. A., Ghan, S. J., Izaurralde, R. C., Rosenberg, N. J. and Leung, L. R.., Elevation dependence of winter wheat production in eastern Washington State with climate change: a methodological study. Climate Change, 2002, 54(1–2), 141–164.
  • Wotton, B. M., Stocks, B. J., Flannigan, M. D., Laprise, R. and Blanchet, J. P., Estimating future 2  CO2 fire climates in the boreal forest of Canada using a regional climate model. In proceedings of Third International Conference on Forest Fire Research and the 14th Conference in Fire and Forest Meteorology, University of Coimbra, Portugal, 1998, pp. 1207–1221.
  • Arnell, N. W., Hudson, D. A. and Jones, R. G., Climate change scenarios from a regional climate model: estimating change in runoff in southern Africa. J. Geophys. Res: Atmos., 2003, 108(D16), 4519–4528.
  • Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., de Castro, M., Deque, M. and van den Hurk, B., An intercomparison of regional climate models for Europe: model performance in present-day climate. Climate Change, 2007, 81(1), 31–52.
  • Lucas-Picher, P., Christensen, J. H., Saeed, F., Kumar, P., Asharaf, S., Ahrens, B. and Hagemann, S., Can regional climate models represent the Indian monsoon? J. Hydrometeorol., 2011, 12(5), 849–868.
  • Mathison, C., Wiltshire, A., Dimri, A. P., Falloon, P., Jacob, D., Kumar, P. and Yasunari, T., Regional projections of North Indian climate for adaptation studies. Sci. Total Environ., 2013, 468, S4–S17.
  • Giorgi, F., Mearns, L. O., Shields, C. and McDaniel, L., Regional nested model simulations of present day and 2 x CO2 climate over the central plains of the US. Climate Change, 1998, 40(3–4), 457–493.
  • Mearns, L. O., Giorgi, F., Whetton, P., Pabon, D., Hulme, M. and Lal, M., Guidelines for use of climate scenarios developed from regional climate model experiments, IPCC Guideline Paper, 2003.
  • Stone, M. C., Hotchkiss, R. H. and Mearns, L. O., Water yield responses to high and low spatial resolution climate change scenarios in the Missouri River Basin. Geophys. Res. Lett., 2003, 30(4).
  • Zacharias, M., Kumar, S. N., Singh, S. D., Rani, D. S. and Aggarwal, P. K., Evaluation of a regional climate model for impact assessment of climate change on crop productivity in the tropics. Curr. Sci., 2015, 108(6), 1119.
  • Hay, J., Extreme weather and climate events, and farming risks. In Managing Weather and Climate Risks in Agriculture (eds Sivakumar, M. V. K. and Motha, R. P.), Springer, Berlin, 2007, pp. 1–19.
  • Hertzler, G., Adapting to climate change and managing climate risks by using real options. Crop Pasture Sci., 2007, 58(10), 985–992.
  • Geethalakshmi, V., Lakshmanan, A., Rajalakshm, D., Jagannathan, R., Sridhar, G., Ramaraj, A. P. and Anbhazhagan, R., Climate change impact assessment and adaptation strategies to sustain rice production in Cauvery basin of Tamil Nadu. Curr. Sci., 2011, 101(3), 342–347.
  • Chaturvedi, R. K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N. V., Sukumar, R. and Ravindranath, N. H., Impact of climate change on Indian forests: a dynamic vegetation modelling approach. Mitig. Adapt. Strat. Global Change, 2011, 16(2), 119–142.
  • Iverson Louis, R. and Prasad, A. M., Potential changes in tree species richness and forest community types following climate change. Ecosystems, 2001, 4(3), 186–199.
  • Solomon, A. M., West, D. C. and Solomon, J. A., Simulating the role of climate change and species immigration in forest succession. In Forest Succession: Concepts and Application (eds West, D. C. Shugart, H. H. and Botkin, D. B.), Springer, New York, 1981, pp. 154–177.
  • Solomon, A. M. and Bartlein, P. J., Past and future climate change: response by mixed deciduous–coniferous forest ecosystems in northern Michigan. Can. J. For. Res., 1992, 22, 1727–173.
  • Solomon, A. M., Transient response of forests to CO2 induced climate change: simulation modelling experiments in eastern North America. Oecologia, 1986, 68, 567–579.
  • Smith, T. M., Smith, J. B. and Shugart, H. H., Modelling the response of terrestrial vegetation to climate change in the tropics. In Tropical Forests in Transition-Ecology of Natural and Anthropogenic Disturbance Processes (ed. Goldammer, J. G.), Birkhauser Verlag, Basel-Boston, 1992, pp. 253–268.
  • Fischlin, A. and Gyalistras, D., Assessing impacts of climatic change on forests in the Alps. Global. Ecol. Biogeogr., 1997, 6, 19–37.
  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J. and Lexer, M. J., Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage., 2010, 259(4), 698–709.
  • Madhya Pradesh (MP) State Action Plan on Climate Change – Integrating Concern – Converging Possibilities, State Knowledge Management Centre on Climate Change, Environmental Protection and Coordination Organization, Housing and Environment Department, Government of MP, 2014.
  • Loehle, C. and LeBlanc, D., Model-based assessments of climate change effects on forests: a critical review. Ecol. Model., 1996, 90(1), 1–31.
  • Neilson, R. P. and Marks, D., A global perspective of regional vegetation and hydrologic sensitivities from climatic change. J. Veg. Sci., 1996, 5(5), 715–730.
  • Quillet, A., Peng, C. and Garneau, M., Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: recent developments, limitations, and future challenges. Environ. Rev., 2010, 18(NA), 333–353.
  • Atkin, O. K., Atkinson, L. J., Fisher, R. A., Campbell, C. D., Zaragoza‐Castells, J. O., Pitchford, J. W. and Hurry, V., Using temperature‐dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Global Change Biol., 2008, 14(11), 2709–2726.
  • Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L. and Jones, C. D., Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global. Change Biol., 2008, 14(9), 2015–2039.
  • Bunn, A. G., Goetz, S. J. and Fiske, G. J., Observed and predicted responses of plant growth to climate across Canada. Geophys. Res. Lett., 2005, 32(16), 1–4.
  • Bounoua, L., Collatz, G. J., Los, S. O., Sellers, P. J., Dazlich, D. A., Tucker, C. J. and Randall, D. A., Sensitivity of climate to changes in NDVI. J. Climate, 2000, 13(13), 2277–2292.
  • Gonzalez-Orozco, C. E., Pollock, L. J., Thornhill, A. H., Mishler, B. D., B. Knerr, N., Laffan, S.W. and Kujala, H., Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change, 2016, 6(12), 1110–1114.
  • Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O. and Schewe, J., The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl. Acad. Sci. USA, 2014, 111(9), 3228–3232.
  • Reed, B. C., Brown, J. F., Vander Zee, D., Loveland, T. R., Merchant, J. W. and Ohlen, D. O., Measuring phenological variability from satellite imagery. J. Veg. Sci., 1994, 5(5), 703–714.
  • Bawa, K., Rose, J., Ganeshaiah, K. N., Barve, N., Kiran, M. C. and Umashaanker, R., Assessing biodiversity from space: an example from the Western Ghats, India. Conserv. Ecol., 2002, 6(2), 7.
  • Salunkhe, O., Khare, P. K., Sahu, T. R. and Singh, S., Above ground biomass and carbon stocking in tropical deciduous forests of state of Madhya Pradesh, India. Taiwania, 2014, 59(4), 353–359.
  • Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W., Zhao, M. and Ahl, D. E., Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing Environ., 2006, 102(3), 282–292.
  • Thiam, A. K., The causes and spatial pattern of land degradation risk in southern Mauritania using multi temporal AVHRR‐NDVI imagery and field data. Land Degrad. Dev., 2003, 14(1), 133–142.
  • Lucht, W. et al., Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 2002, 296, 1687–1689.
  • Myneni, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E., Liski, J. and Hughes, M. K., A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci., 2001, 98(26), 14784–14789.
  • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J. and Running, S. W., Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625), 1560–1563.
  • Zhang, J., Dong, W., Congbin, F. and Lingyun, W., The influence of vegetation covers on summer precipitation in China: a statistical analysis of NDVI and climate data. Adv. Atmos. Sci., 2003, 20(6), 1002–1006.
  • Zhang, J., Dong, W., Ye, D. and Fu, C., New evidence for effects of land cover in China on summer climate. Chin. Sci. Bull., 2000, 48(4), 401–405.
  • Liu, Y., Wang, X., Guo, M., Tani, H., Matsuoka, N. and Matsumura, S., Spatial and temporal relationships among NDVI, climate factors, and land cover changes in Northeast Asia from 1982 to 2009. GISci. Remote Sensing, 2011, 48(3), 371–393.
  • Eklundh, L. and Olsson, L., Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett., 2003, 30(8), 1430–1433.
  • DeFries, R. S. and Townshend, J. R. G., NDVI-derived land-cover classifications at a global-scale. Int. J. Remote Sensing, 1994, 15(17), 3567–3586.
  • Potter, C. S., Terrestrial biomass and the effects of deforestation on the global carbon cycle. BioScience, 1999, 49(10), 769–778.
  • Kasischke, E. S., French, N. H., Harrell, P., Christensen, N. L., Ustin, S. L. and Barry, D., Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data. Remote Sensing Environ., 1993, 45(1), 61–71.
  • Weishou, S., Di, J., Hui, Z., Shouguang, Y., Haidong, L. and Naifeng, L., The response relation between climate change and NDVI over the Qinghai–Tibet plateau. J. World Acad. Sci., Eng. Technol., 2011, 59, 2216–2222.
  • Jessica, P. K., Porwal, M. C., Roy, P. S. and Sandhya, G., Forest change detection in Kalarani round, Vadodara, Gujarat – a remote sensing and GIS approach. J. Indian Soc. Remote Sensing, 2001, 29, 129–135.
  • Macleod, R. D. and Congalton, R. G. A., Quantitative comparison of change detection algorithms for monitoring Eelgrass from remote sensed data. Photogramm. Eng. Remote Sensing, 1998, 64, 207–216.
  • Rahman, M. M., Temporal change detection of vegetation coverage in Patuakhali coastal area of Bangladesh using GIS and remotely sensed data. Int. J. Geomat. Geosci., 2013, 4(1), 36.
  • Amin, A. and Singh, S. K., Study of urban land use dynamics in Srinagar city using geospatial approach. Bull. Environ. Sci. Res., 2012, 1(2), 18–24.
  • Acharjee, S., Changmai, M., Bhattacharjee, S. and Mahanta, J., Forest cover change detection using remote sensing and GIS – a study of Jorhat and Golaghat Districts, Assam. Int. J. Environ. Resour., 2012, 1(2), 45–49.
  • Roy, D. P., The impact of misregistration upon composited wide field of view satellite data and implications for change detection. IEEE Trans. Geosci. Remote Sensing, 2000, 38(4), 2017–2032.
  • Fitter, A. H. et al., Relationship between first flowering date and temperature in the flora of a locality in central England. Funct. Ecol., 1995, 9, 55–60.
  • Kushwaha, C. P. and Singh, K. P., India needs phenological stations network. Curr. Sci., 2008, 95, 832–834.
  • Myneni, R., Keeling, B. C. D., Tucker, C. J., Asrar, G. and Nemani, R. R., Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386(6626), 698–702.
  • Lechowicz, M. J. and Koike, T., Phenology and seasonality of woody plants: an unappreciated element in global change research? Can. J. Bot., 1995, 73, 175–182.
  • Kramer, K., Phenology and growth of European trees in relation to climate change. Ph D thesis, Landbouw Universiteit, Wageningen, 1996.
  • Parmesan, C. and Yohe, G., A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421, 37–42.
  • Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M. and Numaguti, A., Future climate change: implications for Indian summer monsoon and its variability. Curr. Sci., 2001, 81(9), 1196–1207.
  • Ovaskainen, O., Skorokhodova, S., Yakovleva, M., Sukhov, A., Kutenkov, A., Kutenkova, N. and del Mar Delgado, M., Communitylevel phenological response to climate change. Proc. Natl. Acad. Sci., 2013, 110(33), 13434–13439.
  • Emanuel, W. R., Shugart, H. H. and Stevenson, M. P., Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climate Change, 1985, 7(1), 29–43.
  • Thuiller, W., Biodiversity: climate change and the ecologist. Nature, 2007, 448(7153), 550–552.
  • Lavorel, S., McIntyre, S., Landsberg, J. and Forbes, T. D. A., Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol., 1997, 12(12), 474–478.
  • Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E. and Myneni, R., Coupling of the common land model to the NCAR community climate model. J. Climate, 2002, 15(14), 1832–1854.
  • Foley, J. A., Levis, S., Prentice, I. C., Pollard, D. and Thompson, S. L., Coupling dynamic models of climate and vegetation. Global Change Biol., 1998, 4(5), 561–579.
  • Sitch, S. et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 2003, 9(2), 161–185.
  • Clark, D. B. et al., The Joint UK Land Environment Simulator (JULES), model description-part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev., 2011, 4(3), 701.
  • Lotka, A. J., Elements of Physiological Biology, Dover Publications, New York, 1925.
  • Volterra, V., Fluctuation in the abundance of a species considered mathematically. Nature, 1926, 118(2972), 558–560.
  • Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T. A. O. and Liu, J. I. E., Changes in satellite‐derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biol., 2011, 17(10), 3228–3239.
  • Eckert, S., Husler, F., Liniger, H. and Hodel, E., Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ., 2015, 113, 16–28.
  • Ning, T., Liu, W., Lin, W. and Song, X., NDVI variation and its responses to climate change on the northern loess plateau of China from 1998 to 2012. Adv. Meteorol., 2015, 1–10.
  • Li, Z., Nadon, S. and Cihlar, J., Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm. Int. J. Remote Sensing, 2000, 21(16), 3057–3069.
  • Guo, Z. X., Wang, Z. M., Song, K. S., Zhang, B., Li, F. and Liu, D. W., Correlations between forest vegetation NDVI and water/thermal condition in Northeast China forest regions in 1982–2003. Chin. J. Ecol., 2007, 26(12), 1930–1936.

Abstract Views: 314

PDF Views: 80




  • Understanding the Linkages between Climate Change and Forest

Abstract Views: 314  |  PDF Views: 80

Authors

Rinku Moni Devi
Indian Institute of Forest Management, Bhopal 462 003, India
Maneesh Kumar Patasaraiya
Indian Institute of Forest Management, Bhopal 462 003, India
Bhaskar Sinha
Centre for Climate Change Studies, Indian Institute of Forest Management, Bhopal 462 003, India
Sameer Saran
Indian Institute of Remote Sensing, Dehradun 248 001, India
A. P. Dimri
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
Rajeev Jaiswal
Indian Space Research Organisation, Bengaluru 560 094, India

Abstract


The present study reviews the application of various regional climate models and remote sensing techniques to understand and define impacts of climate change on the forest resources with specific reference to India. It illustrates the potentials and limitations of regional climate models, vegetation models and remote sensing techniques like normalized difference vegetation index time-series analysis, change detection method and phenological attributes in assessing and monitoring the impacts of climate change on vegetation. The study recommends that regional climate models and remote sensing techniques need to be integrated in tandem for understanding the present and future impacts of climate change on forest ecosystems. This could help to improve the accuracy and prediction, which can contribute to planning effective adaptation strategies in the forestry sector.

Keywords


Climate Change, Forest, Regional Climate Models, Remote Sensing.

References





DOI: https://doi.org/10.18520/cs%2Fv114%2Fi05%2F987-996