Open Access Open Access  Restricted Access Subscription Access

The First Direct Detection of Gravitational Waves Opens a Vast New Frontier in Astronomy


Affiliations
1 LIGO Hanford Observatory, P.O. Box 159, Richland, WA 99352, United States
2 LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, United States
 

We review the first direct detection of gravitational waves in the first observing run of the newly installed Advanced LIGO gravitational-wave detectors. This opens a new window on the universe, using an entirely new phenomena as the messenger to explore the cosmos. We also describe prospects for the future exploration of this new frontier.

Keywords

Astronomy, Direct Detection, Gravitational Waves, Space–Time.
User
Notifications
Font Size

  • Gertsenschtein, M. E. and Pustovoit, V. I., On the detection of low frequency gravitational waves. Sov. Phys. JETP, 1963, 16, 605–607.
  • Weiss, R., Electromagnetically coupled broadband gravitational antenna. Quarterly Report No. 105, MIT Radiation Laboratory, 1972; https://dcc.ligo.org/P720002/public
  • Caves, C. M., Quantum mechanical noise in an interferometer. Phys. Rev. D, 1981, 23, 1693–1708.
  • Abramovici, A. et al., LIGO – the Laser Interferometer GravitationalWave Observatory. Science, 1992, 256, 325–333.
  • Vogt, R., Drever, R., Thorne, K., Raab, F. and Weiss, R., The construction, operation, and supporting research and development of a Laser Interferometer Gravitational-Wave Observatory; https://dcc.ligo.org/LIGO-M890001/public
  • LIGO Scientific Collaboration; http://www.ligo.org
  • Abbott, B. P. et al., LIGO: the Laser Interferometer GravitationalWave Observatory. Rep. Prog. Phys., 2009, 72, 076901.
  • A list of LIGO Scientific Collaboration articles can be found at https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
  • Aasi, J., et al., First searches for optical counterparts to gravitational-wave candidate events. Astrophys. J. Suppl., 2014, 211, 7.
  • Aartsen, M. G. et al., Multimessenger search for sources of gravitational waves and high-energy neutrinos: initial results for LIGO-Virgo and IceCube. Phys. Rev. D, 2014, 90, 102002.
  • Aasi, J. et al., Advanced LIGO. Class. Quantum Grav., 2015, 32, 074001.
  • Abbott, B. P., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116, 061102; https://doi.org/10.1103/PhysRevLett.116.061102
  • Abbott, B. P. et al., The basic physics of the binary black hole merger GW150914. Ann. Phys., 2017, 529, 1600209.
  • Abbott, B. P. et al., Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X, 2016, 6, 041015; https://doi.org/10.1103/PhysRevX.6.041015
  • Veitch, J. et al., Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LAL Inference software library. Phys. Rev. D, 2015, 91, 042003.
  • Abbott, B. P. et al., GW150914: the Advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett., 2016, 116, 131103; https://doi.org/10.1103/PhysRevLett.116.131103
  • Acernese, F. et al., Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav., 2015, 32, 024001.
  • Aso, Y. et al., Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 2013, 88, 043007.
  • Souradeep, T., Raja, S., Khan, Z., Unnikrishnan, C. S. and Iyer, B., LIGO-India – a unique adventure in Indian science. Curr. Sci., 2017, 113(4), 672–677.
  • Sathyaprakash, B. S., Fairhurst, S., Schutz, B. F., Veitch, J., Klimenko, S., Reitze, D. H. and Whitcomb, S. E., Scientific benefits of moving one of LIGO Hanford detectors to India; https://dcc.ligo.org/LIGO-T1200219/public
  • Caves, C. M., Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett., 1980, 45, 75–79.
  • Abadie, J. et al. (The LIGO Scientific Collaboration), A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys., 2011, 7, 962–965.
  • Aasi, J. et al. (The LIGO Scientific Collaboration), Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613–619.
  • Oelker, E., Isogai, T., Miller, J., Tse, M., Barsotti, L., Mavalvala, N. and Evans, M., Audio-band frequency-dependent squeezing for gravitational-wave detectors. Phys. Rev. Lett., 2016, 116, 041102.
  • Harry, G. M. et al., Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Grav., 2002, 19, 897–917.
  • Hamden, R., Trinastic, J. P. and Cheng, H., Molecular dynamics study of the mechanical loss in amorphous pure and doped silica. J. Chem. Phys., 2014, 141, 054501.
  • Dwyer, S., Sigg, D., Ballmer, S. W., Barsotti, L., Mavalvala, N. and Evans, M., Gravitational wave detector with cosmological reach. Phys. Rev. D, 2015, 91, 082001.
  • Einstein Telescope design study; http://www.et-gw.eu/etdsdocument

Abstract Views: 182

PDF Views: 71




  • The First Direct Detection of Gravitational Waves Opens a Vast New Frontier in Astronomy

Abstract Views: 182  |  PDF Views: 71

Authors

F. J. Raab
LIGO Hanford Observatory, P.O. Box 159, Richland, WA 99352, United States
D. H. Reitze
LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, United States

Abstract


We review the first direct detection of gravitational waves in the first observing run of the newly installed Advanced LIGO gravitational-wave detectors. This opens a new window on the universe, using an entirely new phenomena as the messenger to explore the cosmos. We also describe prospects for the future exploration of this new frontier.

Keywords


Astronomy, Direct Detection, Gravitational Waves, Space–Time.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi04%2F657-662