Open Access Open Access  Restricted Access Subscription Access

Probing the Heliosphere Using in Situ Payloads On-Board Aditya-L1


Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, India
2 Indian Institute of Science Education and Research, Pashan, Pune 411 008, India
3 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
4 Laboratory for Electro-Optics Systems, ISRO, Bengaluru 560 058, India
 

Aditya-L1, the first ever Indian scientific space mission dedicated to probe the Sun, our nearest star, is slated for launch by the Indian Space Research Organisation (ISRO) most likely in 2020, the year coinciding with the expected start of the rising phase of solar cycle 25. Of the seven science payloads on-board Aditya-L1, three are in situ instruments, namely the Aditya Solar wind Particle Experiment, the Plasma Analyser Package for Aditya and a magnetometer package. These three payloads will sample heliospheric data from the L1 Lagrangian point of the Sun-Earth system, at a distance of ~1% of the distance to the Sun, along the Sun-Earth line. This is therefore a unique opportunity for the solar physics community to gain a better understanding of the inner heliosphere and predict space weather more accurately.

Keywords

Aditya-L1, Heliosphere, Payload, Solar Wind Plasma.
User
Notifications
Font Size

  • Holzer, T. E., In ESA Special Publication, Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere (eds Fleck, B., Zurbuchen, T. H. and Lacoste, H.), 2005, Vol. 592, p. 115.
  • Bridge, H. S., Plasmas in space. Phys. Today, 1963, 16, 31.
  • Ness, N. F., The Interplanetary Medium. In Introduction to Space Science, 1965, p. 323.
  • Parker, E. N., Dynamics of the interplanetary gas and magnetic fields. ApJ, 1958, 128, 664.
  • Holzer, T. E. and Axford, W. I., The theory of stellar winds and related flows. Ann. Rev. Astron. Astrophys., 1970, 8, 31.
  • Belcher, J. W. and Davis Jr, L., Large-amplitude Alfvén waves in the interplanetary medium 2. JGR, 1971, 76, 3534.
  • Leer, E. and Holzer, T. E., Energy addition in the solar wind, JGR, 1980, 85, 4681.
  • Bame, S. J., Asbridge, J. R., Feldman, W. C., Montgomery, M. D. and Gary, S. P., Evidence for local ion heating in solar wind high speed streams. GRL, 1975, 2, 373.
  • Kasper, J. C., Lazarus, A. J. and Gary, S. P., Hot solar-wind helium: direct evidence for local heating by Alfven-cyclotron dissipation. Phys. Rev. Lett., 2008, 101, 261103.
  • Pilipp, W. G. et al., Variations of electron distribution functions in the solar wind. JGR, 1987, 92, 1103.
  • Marsch, E. et al., Solar wind protons – three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. JGR, 1982, 87, 52.
  • Bale, S. D. et al., Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett., 2009, 103, 211101.
  • Lie-Svendsen, Ø., Holzer, T. E. and Leer, E., Electron heat conduction in the solar transition region: validity of the classical description. ApJ, 1999, 525, 1056.
  • Rosenbauer, H. et al., A survey on initial results of the HELIOS plasma experiment. J. Geophys., 1977, 42, 561.
  • Pierrard, V., Maksimovic, M. and Lemaire, J., Electron velocity distribution functions from the solar wind to the corona. JGR, 1999, 104, 17021.
  • Vocks, C. and Mann, G., Generation of suprathermal electrons by resonant wave–particle interaction in the solar corona and wind. ApJ, 2003, 593, 1134.
  • Vourlidas, A. et al., Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. ApJ, 2010, 722, 1522.
  • Howard, R. A., Michels, D. J., Sheeley Jr, N. R. and Koomen, M. J., The observation of a coronal transient directed at earth. ApJL, 1982, 263, L101.
  • Hirshberg, J., Asbridge, J. R. and Robbins, D. E., Velocity and flux dependence of the solar–wind helium abundance. JGR, 1972, 77, 3583.
  • Lepri, S. T. and Zurbuchen, T. H., Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. JGR, 2004, 109, A01112.
  • Lepri, S. T. et al., Iron charge distribution as an identifier of interplanetary coronal mass ejections. JGR, 2001, 106, 29231.
  • Henke, T. et al., Ionization state and magnetic topology of coronal mass ejections. JGR, 2001, 106, 10597.
  • Marsch, E., Yao, S. and Tu, C.-Y., Proton beam velocity distributions in an interplanetary coronal mass ejection. Ann. Geophys., 2009, 27, 869.
  • Reames, D. V., Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 1999, 90, 413.
  • Feynman, J. and Gabriel, S. B., On space weather consequences and predictions. JGR, 2000, 105, 10543.
  • Barth, J. L., Dyer, C. S. and Stassinopoulos, E. G., Space, atmospheric and terrestrial radiation environments. Nucl. Sci., IEEE Trans., 2003, 50, 466.
  • Gargate, L., Fonseca, R. A., Silva, L. O., Bamford, R. A. and Bingham, R., SEP acceleration in CME driven shocks using a hybrid code. ApJ, 2014, 792, 9.
  • Asbridge, J. R., Bame, S. J. and Strong, I. B., Outward flow of protons from the Earth’s bow shock. JGR, 1968, 73, 5777.
  • Anagnostopoulos, G. C., Kaliabetsos, G., Argyropoulos, G. and Sarris, E. T., High energy ions and electrons upstream from the Earth’s bow shock and their dependence on geomagnetic conditions: statistical results between years 1982–1988. GRL, 1999, 26, 2151.
  • Desai, M. I. et al., Characteristics of energetic (>30 keV/nucleon) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. JGR, 2000, 105, 61.
  • Janardhan, P., Bisoi, S. K. and Gosain, S., Solar polar fields during cycles 21–23: correlation with meridional flows. Solar Phys., 2010, 267, 267.
  • Janardhan, P., Bisoi, S. K., Ananthakrishnan, S., Tokumaru, M. and Fujiki, K., The prelude to the deep minimum between solar cycles 23 and 24: interplanetary scintillation signatures in the inner heliosphere. GRL, 2011, 38, L20108.
  • Bisoi, S. K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S. and Divekar, A., Changes in quasi-periodic variations of solar photospheric fields: precursor to the deep solar minimum in cycle 23? Solar Phys., 2014, 289, 41.
  • Janardhan, P., Bisoi, S. K., Ananthakrishnan, S., Sridharan, R. and Jose, L., Solar and interplanetary signatures of a Maunder-like grand solar minimum around the corner – implications to near-earth space. Sun Geosphere, 2015, 10, 147.
  • Janardhan, P. et al., A 20 year decline in solar photospheric magnetic fields: inner-heliospheric signatures and possible implications. JGR, 2015, 120, 5306.
  • Rout, D., Chakrabarty, D., Janardhan, P., Sekar, R., Maniya, V. and Pandey, K., Solar wind flow angle and geoeffectiveness of co-rotating interaction regions: first results. GRL, 2017, 44, 4532.
  • Cane, H. V., Reames, D. V. and von Rosenvinge, T. T., The role of interplanetary shocks in the longitude distribution of solar energetic particles. JGR, 1988, 93, 9555.

Abstract Views: 208

PDF Views: 80




  • Probing the Heliosphere Using in Situ Payloads On-Board Aditya-L1

Abstract Views: 208  |  PDF Views: 80

Authors

P. Janardhan
Physical Research Laboratory, Ahmedabad 380 009, India
Santosh Vadawale
Physical Research Laboratory, Ahmedabad 380 009, India
Bhas Bapat
Indian Institute of Science Education and Research, Pashan, Pune 411 008, India
K. P. Subramanian
Physical Research Laboratory, Ahmedabad 380 009, India
D. Chakrabarty
Physical Research Laboratory, Ahmedabad 380 009, India
Prashant Kumar
Physical Research Laboratory, Ahmedabad 380 009, India
Aveek Sarkar
Physical Research Laboratory, Ahmedabad 380 009, India
Nandita Srivastava
Physical Research Laboratory, Ahmedabad 380 009, India
R. Satheesh Thampi
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
Vipin K. Yadav
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
M. B. Dhanya
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
Govind G. Nampoothiri
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
J. K. Abhishek
Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India
Anil Bhardwaj
Physical Research Laboratory, Ahmedabad 380 009, India
K. Subhalakshmi
Laboratory for Electro-Optics Systems, ISRO, Bengaluru 560 058, India

Abstract


Aditya-L1, the first ever Indian scientific space mission dedicated to probe the Sun, our nearest star, is slated for launch by the Indian Space Research Organisation (ISRO) most likely in 2020, the year coinciding with the expected start of the rising phase of solar cycle 25. Of the seven science payloads on-board Aditya-L1, three are in situ instruments, namely the Aditya Solar wind Particle Experiment, the Plasma Analyser Package for Aditya and a magnetometer package. These three payloads will sample heliospheric data from the L1 Lagrangian point of the Sun-Earth system, at a distance of ~1% of the distance to the Sun, along the Sun-Earth line. This is therefore a unique opportunity for the solar physics community to gain a better understanding of the inner heliosphere and predict space weather more accurately.

Keywords


Aditya-L1, Heliosphere, Payload, Solar Wind Plasma.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi04%2F620-624