Open Access Open Access  Restricted Access Subscription Access

High Pressure:One of the many Tools to Study Material Properties at Extreme Conditions


Affiliations
1 High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400 094, India
 

High pressure is a powerful and clean variable, which when applied can bring about large changes in structure and properties of materials. It can be used to simulate the conditions found deep inside the earth or in different planetary interiors. It is widely used in chemical industry, especially when the chemical reaction products have lower volumes than the initial reactants, and also in the food preservation industry, where it ensures that aromas and flavours are not lost even after preservation. Materials under pressure can be studied both theoretically and experimentally. In this article apart from discussing how to set up a basic high pressure experiment using the DAC, some examples have been elaborated to show how both experiments and theory complement each other and both put together can help in a deeper understanding of the changes brought about by application of high pressure.

Keywords

Germanium Dioxide, High Pressure, Material Properties.
User
Notifications
Font Size

  • Glenzer, S. H. et al., Matter under extreme conditions experiments at the Linac Coherent Light Source. J. Phys. B: At. Mol. Opt. Phys., 2016, 49, 092001–092027.
  • Lange, K. K., Tellgren, E. I., Hoffmann, M. R. and Helgaker, T., A paramagnetic bonding mechanism for diatomics in strong magnetic fields. Science, 2012, 337, 327–331.
  • https://en.wikipedia.org/wiki/Orders_of_magnitude_(pressure)
  • Fox-Skelly, J., 2015; http://www.bbc.com/earth/story/20150129life-at-the-bottom-of-the-ocean
  • Hazen, R. M., Boctor, N., Brandes, J. A., Cody, G. D., Hemley, R. J., Sharma, A. and Yoder Jr, H. S., High pressure and the origin of life. J. Phys. Cond. Matter., 2002, 14, 11489–11494.
  • Anurag, S., Scott, J. H., Cody, G. D., Fogel, M. L., Hazen, R. M., Hemley, R. J. and Huntress, W. T., Microbial activity at gigapascal pressures. Science, 2002, 295, 1514–1516.
  • Badding, J. V., Parker, L. J. and Nesting, D. C., High pressure synthesis of metastable materials. J. Solid State Chem., 1995, 117, 229–235.
  • Ghalsasi, P., Garg, N., Deo, M. N., Garg, A., Mande, H., Ghalsasi, P. and Sharma, S. M., The role of Jahn–Teller distortion in insulator to semiconductor phase transition in organic–inorganic hybrid compound (p-chloroanilinium)2CuCl4 at high pressure. Phys. Chem. Chem. Phys., 2015, 17, 32204–32210.
  • Bundy, F. P., Hall, H. T., Strong, H. M. and Wentorf, R. H., Man-made diamonds. Nature, 1955, 176, 51–55.
  • Wentorf, H. R. J., Cubic form of boron nitride. Chem. Phys., 1957, 26, 956.
  • Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. and Sumiya, H., Materials: ultrahard polycrystalline diamond from graphite. Nature, 2003, 421, 599–600.
  • Sumiya, H. and Irfune, T., Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds. Sci. Tech. Rev., 2008, 66, 85–92.
  • Dubrovinskaia, N., Dubrovinsky, L., Langenhorst, F., Jacobsen, S. and Liebske, C., Nanocrystalline diamond synthesized from C60. Diam. Relat. Mater., 2005, 14, 16–22.
  • Irifune, T., Isobe, F. and Shinmei, T., A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond. Phys. Earth Planet., 2014, 228, 255–261.
  • Sumiya, H. and Irifune, T., Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res., 2007, 22, 2345–2351.
  • McWilliams, R. Stewart, Allen Daltona, D., Konôpkováf, Z., Mahmooda, M. F. and Goncharova, A. F., Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl. Acad. Sci., 2015, 112, 7925–7930.
  • Bergeron, P., Saumon, D. and W. F., New model atmospheres for very cool white-dwarfs with mixed H/He and pure He compositions. Astrophys. J., 1995, 443, 764–779.
  • Celliers, P. M. et al., Insulator-to-conducting transition in dense fluid helium. Phys. Rev. Lett., 2010, 104, 184503–184504.
  • Pan, Y., Inam, F., Zhang, M. and Da, D., Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett., 2008, 100, 206403–206404.
  • Tomoaki Kubo, Takumi Kato, Yuji Higo, and Ken-ichi Funakoshi, Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite. Sci. Adv., 2015, 1, e1500075.
  • Millot, M. et al., Shock compression of stishovite and melting of silica at planetary interior conditions. Science, 2015, 347, 418–420.
  • Niu, H. Y., Oganov, A. R., Chen, X. Q. and Dz, L., Prediction of novel stable compounds in the Mg–Si–O system under exoplanet pressures. Sci. Rep., 2015, 5, 18347–18356.
  • Wang, H., Zeuschner, J., Eremets, M., Troyan, I. and Williams, J., Stable solid and aqueous H2CO3 from CO2 and H2O at high pressure and high temperature. Sci. Rep., 2016, 6, 19902–19910.
  • Bykova, E. et al., Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Commun., 2016, 7, 10661– 10669.
  • Ramaker, D. E., Kumar, L. and Harris, F. E., Exact-exchange crystal Hartree–Fock calculations of molecular and metallic hydrogen and their transitions. Phys. Rev. Lett., 1975, 34, 812–816.
  • Friedli, C. and Ashcroft, N. W., Combined representation method for use in band-structure calculations: Application to highly compressed hydrogen. Phys. Rev. B, 1977, 16, 662–672.
  • Wigner, E. and Huntington, H. B., On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 1935, 3, 764–770.
  • Conover, E., The pressure is on to make metallic hydrogen. Sci. News, 2016, 190, 18.
  • Mazzola, G., Yunoki, S. and Sorella, S., Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation. Nat. Commun., 2014, 5, 3487–3493.
  • Cohen, R. E., Naumov, I. I. and Hemley, R. J., Electronic excitations and metallization of dense solid hydrogen. Proc. Natl. Acad. Sci., 2013, 110, 13757–13762.
  • Azadi, S. and Kühne, T. D., Absence of metallization in solid molecular hydrogen. JETP Lett., 2012, 95, 449–453.
  • Eremets, M. I. and Troyan, I. A., Conductive dense hydrogen. Nature Mater., 2011, 10, 927–931.
  • Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. and Shylin, S. I., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525, 73–76.
  • Ge, Y., Zhang, F. and Yao, Y., First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B, 2016, 93, 224513–224522.
  • Zhang, W. et al., Unexpected stable stoichiometries of sodium chlorides. Science, 2013, 342, 1502–1505.
  • Li, Y. L. et al., Investigation of exotic stable calcium carbides using theory and experiment. Nature Commun., 2015, 6, 6974– 6983.
  • Masson, P., Tonello, C. and Balny, C., High-pressure biotechnology in medicine and pharmaceutical science. J. Biomed. Biotechnol., 2001, 1, 85–88.
  • Evlyukhin, E., Museur, L., Traore, M., Perruchot, C., Zerr, A. and Kanaev, A., Materials: High-pressure-Ramp-induced ultrafast polymerization of 2-(hydroxyethyl)methacrylate. Sci. Rep., 2015, 5, 18244–18253.
  • Chiarello, G. L., Aguirre, M. H. and Selli, E., Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal., 2010, 273, 182–190.
  • Patterson, M. F., McKay, A. M., Connolly, M. and Linton, M., The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage. Food Microbiol., 2012, 30, 205–212.
  • Shahbaz, H. M. et al., Combination of TiO2–UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food Bioprocess Technol., 2016, 9, 182–192.
  • Horie, Y., Kimura, K. and Hori, K., Development of a new fruit processing method by high hydrostatic pressure. J. Agric. Chem. Soc. Jpn., 1991, 65, 1469.
  • Yaldagard, M., Seyed Ali Mortazavi and Tabatabaie, F., The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. Afr. J. Biotechnol., 2008, 7, 2739–2767.
  • Chen, C.-T. A., Oceanography, Carbonate Chemistry of the Oceans, vol. 1.
  • Jayaraman, A., Diamond anvil cell and high pressure physical investigations. Rev. Mod. Phys., 1983, 55, 65–108.
  • Eremets, M. I., High Pressure Experimental Methods, Oxford University Press, 1996.
  • Rahman, A., Correlations in the motion of atoms in liquid argon. Phys. Rev. B., 1964, 136, A405–A411.
  • Car, R. and Parrinello, M., Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett., 1985, 55, 2471–2475.
  • Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Oxford University Press, 1987.
  • Glass, C. W., Oganov, A. R. and Hansen, N., USPEX – evolutionary crystal structure prediction. Comp. Phys. Commun., 2006, 175, 713–720.
  • Dubrovinskaia, N. et al., Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv., 2016, 2, e1600341–e1600353.
  • Katsura, T. et al., A large-volume high-pressure and hightemperature apparatus for in situ X-ray observation. Phys. Earth Planet. Int., 2004, 143, 497–506.
  • Ito, E. et al., Pressure generation and investigation of the postperovskite transformation in MgGeO3 by squeezing the Kawaicell equipped with sintered diamond anvils. Earth Planet. Sci. Lett., 2010, 293, 84–89.
  • Evans, W. J., Yoo, C.-S., Lee, G. W., Cynn, H., Lipp, M. J. and Visbeck, K., Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials. Rev. Sci. Inst., 2007, 78, 073904–073910.
  • Bhatt, H., Murli, C., Garg, N., Deo, M. N., Chitra, R., Choudhury, R. R. and Sharma, S. M., High pressure phase transformations in bis(glycinium)oxalate – an infrared absorption study. Chem. Phys. Lett., 2012, 532, 57–62.
  • Klotz, S., Chervin, J.-C., Munsch, P. and Le Marchand, G., Hydrostatic limits of 11 pressure transmitting media. J. Phys. D: Appl. Phys., 2009, 42, 075413–075420.
  • Sekar, M., Sanjay Kumar, N. R., Ch, P., Sahu, Chandra Shekar, N. V. and Subramanian, N., Cryogenic gas loading in a MaoBell-type diamond anvil cell for high pressure-high temperature investigations. Rev. Sci. Instrum., 2008, 79, 076103–076106.
  • Mao, H. K., Xu, J. and Bell, P. M., Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 1986, 91B, 4673–4676.
  • Hemley, R. J., Zha, C. S., Jephcoat, A. P., Mao, H. K. and Finger, L. W., X-ray diffraction and equation of state of solid neon to 110 GPa. Phys. Rev. B, 1989, 39, 11820–11827.
  • Silvera, I. F., Chijioke, A. D., Nellis, W. J., Soldatov, A. and Tempere, J., Calibration of the ruby pressure scale to 150 GPa. Phys. Stat. Sol., 2007, 244, 460–467.
  • Chijioke, A. D., Nellis, W. J., Soldatov, A. and Silvera, I. F., The ruby pressure standard to 150 GPa. J. Appl. Phys., 2005, 98, 114905–114914.
  • Dorogokupets, P. I. and Oganov, A. R., Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B, 2007, 75, 024115– 024131.
  • Dewaele, A., Loubeyre, L. P. and Mezouar, M., Equations of state of six metals above 94 GPa. Phys. Rev. B, 2004, 70, 094112–094120.
  • Pandey, K. K., Poswal, H. K., Mishra, A. K., Dwivedi, A., Vasanthi, R., Garg, N. and Sharma, S. M., Energy dispersive X-ray diffraction beamline at Indus-2 synchrotron source. Pramana, 2013, 80, 607–619.
  • Kruger, M. B. and Jeanloz, R., Memory glass: an amorphous material formed from aluminum phosphate. Science, 1990, 249, 647.
  • Sankaran, H., Sharma, S. M., Sikka, S. K. and Chidambaram, R., Pressure induced amorphization of AlPO4. Pramana – J. Phys., 1990, 35, 177–180.
  • Somayazulu, M. S., Garg, N., Sharma, S. M. and Sikka, S. K., Search for a precursor crystal-to-crystal phase transition to amorphization in α-GeO2 and α-AlPO4 under pressure. Pramana – J. Phys., 1994, 43, 1–9.
  • Tse, J. S. and Klug, D. D., Structural memory in pressureamorphized AlPO4. Science, 1992, 255, 1559–1561.
  • Chaplot, S. L. and Sikka, S. K., Molecular-dynamics simulation of pressure-induced crystalline-to-amorphous transition in some corner-linked polyhedral compounds. Phys. Rev. B, 1993, 47, 5710–5714.
  • Gillet, P., Badro, J., Varrel, B. and McMillan, P. F., Highpressure behavior in α-AlPO4: amorphization and the memoryglass effect. Phys. Rev. B, 1995, 51, 11262–11270.
  • Murli, C., Sharma, S. M., Kulshreshtha, S. K. and Sikka, S. K., High pressure study of phase transitions in alpha-FePO4. Pramana – J. Phys., 1997, 49, 285–291.
  • Pasternak, M. P. et al., Pressure-induced concurrent transformation to an amorphous and crystalline phase in berlinite-type FePO4. Phys. Rev. Lett., 1997, 79, 4409–4412.
  • Garg, N. and Sharma, S. M., A molecular dynamical investigation of high pressure phase transformations in berlinite (alpha-AlPO4). J. Phys. Condens. Matter, 2000, 12, 375–397.
  • Sharma, S. M., Garg, N. and Sikka, S. K., High-pressure X-raydiffraction study of α-AlPO4. Phys. Rev. B, 2000, 62, 8824– 8827.
  • Pellicer-Porres, J., Saitta, A. M., Polian, A., Itie, J. P. and Hanfland, M., Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure. Nature Mat., 2007, 6, 698–702.
  • Tse, J. S. and Klug, D. D., Mechanical instability of α-quartz: A molecular dynamics study. Phys. Rev Lett., 1991, 67, 3559–3562.
  • Somayazulu, M. S., Sharma, S. M., Garg, N., Chaplot, S. L. and Sikka, S. K., The behaviour of alpha-quartz and pressure-induced SiO2 glass under pressure: a molecular dynamical study. J. Phys. Condens. Matter., 1993, 5, 6345–6356.
  • Sato, T. and Funamori, N., Six-fold-coordinated amorphous polymorph of SiO2 under high pressure. Phys. Rev. Lett., 2008, 101, 255502–255505.
  • Sato, T. and Funamori, N., High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys. Rev. B, 2010, 82, 184102–184105.
  • Wu, M., Liang, Y., Jiang, J.-Z. and Tse, J. S., Structure and properties of dense silica glass. Sci. Rep., 2012, 2, 398–404.
  • Itie, J. P., Polian, A., Calas, G., Petiau, J., Fontaine, A. and Tolentino, H., Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys. Rev. Lett., 1989, 63, 398–401.
  • Polsky, H., Smith, K. H. and Wolf, G. H., Effect of pressure on the absolute Raman scattering cross section of SiO2 and GeO2 glasses. J. Non-Cryst. Solids, 1999, 248, 159–168.
  • Grimsditch, M., Bhadra, R. and Meng, Y., Brillouin scattering from amorphous materials at high pressures. Phys. Rev. B, 1988, 38, 7836–7838.
  • Meade, C., Hemley, R. J. and Mao, H. K., High-pressure X-ray diffraction of SiO2 glass. Phys. Rev. Lett., 1992, 69, 1387–1390.
  • Guthrie, M. et al., Formation and structure of a dense octahedral glass. Phys. Rev. Lett., 2004, 93, 115502–115505.
  • Shanavas, K. V., Garg, N. and Sharma, S. M., Classical molecular dynamics simulations of behavior of GeO2 under high pressures and at high temperatures. Phys. Rev. B, 2006, 73, 094120– 094132.
  • Baldini, M., Aquilanti, G., Mao, H-K., Yang, W., Shen, G., Pascarelli, S. and Mao, W. L., High-pressure EXAFS study of vitreous GeO2 up to 44 GPa. Phys. Rev. B, 2010, 81, 024201–024207.
  • Hong, X., Newville, M., Duffy, T. S. Sutton, S. R. and Rivers, M. L., X-ray absorption spectroscopy of GeO2 glass to 64 GPa. J. Phys.: Condens. Matter, 2014, 26, 035104–035113.
  • Marrocchelli, D., Salanne, M. and Madden, P. A., High-pressure behaviour of GeO2: a simulation study. J. Phys.: Condens. Matter, 2010, 22, 152102–152110.
  • Lelong, G., Cormier, L., Ferlat, G., Giordano, V., Henderson, G.S., Shukla, A. and Calas, G., Evidence of fivefold-coordinated Ge atoms in amorphous GeO2 under pressure using inelastic X-ray scattering. Phys. Rev. B, 2012, 85, 134202–134207.
  • Cunsolo, A. et al., Signature of a polyamorphic transition in the THz spectrum of vitreous GeO2. Sci. Rep., 2015, 5, 14996– 15005.
  • Wezka, K. et al., Mechanisms of network collapse in GeO2 glass: high-pressure neutron diffraction with isotope substitution as arbitrator of competing models. J. Phys.: Condens. Matter., 2012, 24, 502101–502110.
  • Konoa, Y. et al., Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6. Proc. Natl. Acad. Sci., 2016, 113, 3436–3441.
  • Mishra, A. K., Shanavas, K. V., Poswal, H. K., Mandal, B. P., Garg, N. and Sharma, S. M., Pressure induced phase transitions in multiferroic BiFeO3. Solid State Commun., 2013, 154, 72–76.
  • Garg, N., Mishra, A. K., Poswal, H. K., Tyagi,, A. K. and Sharma, S. M., High pressure phase transitions in scheelite structured fluoride: ErLiF4. J. Solid State Chem., 2015, 229, 164– 172.
  • Haumont, R., Bouvier, P., Pashkin, A., Rabia, K., Frank, S., Dkhil, B., Crichton, W. A., Kuntscher, C. A. and J. K., Effect of high pressure on multiferroic BiFeO3. Phys. Rev. B, 2009, 79, 184110–184120.
  • Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., Ovchinnokov, S. G., Hu, M. Y. and Chow, P., Another mechanism for the insulatormetal transition observed in Mott insulators. Phys. Rev. B, 2008, 77, 155112–155118.
  • Ravindran, P., Vidya, R., Kjekshus, A., Fjellvag, H. and Eriksson, O., Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B., 2006, 74, 224412–224418.
  • Vazquez, O. E. G. and Iniguez, J., Pressure-induced structural, electronic, and magnetic effects in BiFeO3. Phys. Rev. B, 2009, 79, 064102–064106.
  • Belik, A. A., Yusa, H., Hirao, N., Ohishi, Y. and TakayamaMuromachi, E., Structural properties of multiferroic BiFeO3 under hydrostatic pressure. Chem. Mater., 2009, 21, 3400–3405.
  • Olijynk, H., Sikka, S. K. and Holzaphel, W. B., Structural phase transitions in Si and Ge under pressures up to 50 GPa. Phys. Lett. A, 1984, 103A, 137–140.
  • McMillan, P. F., Wilson, M., Wilding, M. C., Daisenberger, D., Mezouar, M. and Greaves, G. N., Polyamorphism and liquid– liquid phase transitions: challenges for experiment and theory. J. Phys.: Condens. Mater, 2007, 19, 415101–415142.
  • Jamieson, J. C., Crystal structures at high pressures of metallic modifications of silicon and germanium. Science, 1963, 139, 762–764.
  • Wentorf, R. H. and Kasper, J. H., Two new forms of silicon. Science, 1963, 139, 338–339.
  • Tolbert, S. H., Herhold, A. B., Brus, L. E. and Alivisatos, A. P., Pressure-induced structural transformations in Si nanocrystals: surface and shape effects. Phys. Rev. Lett., 1996, 76, 4384–4388.
  • Tolbert, S. H. and Alivisatos, A. P., High-pressure structural transformations in semiconductor nanocrystals. Annu. Rev. Phys. Chem., 1995, 46, 595–626.
  • Poswal, H. K. et al., Pressure-induced structural phase transformations in silicon nanowires. J. Nanosci. Nanotech., 2005, 5, 729–732.
  • Domnich, V. and Gogotsi, Y., Phase transformations in silicon under contact loading. Rev. Adv. Mat. Sci., 2002, 3, 1–36.
  • Deb, S. K., Wilding, M. C., Somayazulu, M. and McMillan, P. F., Pressure-induced amorphization and an amorphous– amorphous transition in densified porous silicon. Nature, 2001, 414.
  • Garg, N., Pandey, K. K., Shanavas, K. V., Betty, C. A. and Sharma, S. M., Memory effect in low-density amorphous silicon under pressure. Phys. Rev. B, 2011, 83, 115202–115208.
  • Pandey, K. K., Garg, N., Shanavas, K. V., Sharma, S. M. and Sikka, S. K., Pressure induced crystallization in amorphous silicon. J. App. Phys., 2011, 109, 113511–113518.
  • Marques, M., Florez, M., Recio, J. M., Gerward, L. and Olsen, J. S., Structure and stability of ZrSiO4 under hydrostatic pressure. Phys. Rev. B, 2006, 74, 014104–014113.
  • Wang, X., Loa, I., Syassen, K., Hanfland, M. and Ferrand, B., Structural properties of the zircon- and scheelite-type phases of YVO4 at high pressure. Phys. Rev. B, 2004, 70, 064109–064115.
  • Kusaba, K., Yagi, T., Kikuchi, M. and Syono, Y., Structural considerations on the mechanism of the shock-induced zirconscheelite transition in ZrSiO4. J. Phys. Chem. Solids, 1986, 47, 675–679.
  • Smirnov, M. B., Mirgorodsky, A. P., Kazimirov, V. Y. and Guinebretière, R., Bond-switching mechanism for the zirconscheelite phase transition. Phys. Rev. B, 2008, 78, 094109– 094120.
  • Mishra, A. K., Garg, N., Pandey, K. K., Shanavas, K. V., Tyagi, A. K. and Sharma, S. M., Zircon-monoclinic-scheelite transformation in nanocrystalline chromates. Phys. Rev. B, 2010, 81, 104109–104115.
  • Sickafus, K. E. et al., Radiation tolerance of complex oxides. Science, 2000, 289, 748–751.
  • Mandal, B. P., Garg, N., Sharma, S. M. and Tyagi, A. K., Solubility of ThO2 in Gd2Zr2O7 pyrochlore: XRD, SEM and Raman spectroscopic studies. J. Nucl. Mater., 2009, 392, 95–99.
  • Ewing, R. C., Weber, W. J. and Lian, J., Nuclear waste disposal – pyrochlore A2B2O7...: nuclear waste form for the immobilization of plutonium and ‘minor’ actinides. J. Appl. Phys., 2004, 95, 5949–5971.
  • Garg, N. et al., Decomposition of lanthanum hafnate at high pressures. Phys. Rev. B, 2008, 77, 214105–214113.
  • Mohacĕk-Grosĕv, V., Grdadolnik, J., Stare, J. and Hadži, D., Identification of hydrogen bond modes in polarized Raman spectra of single crystals of α-oxalic acid dihydrate. Raman Spectrosc., 2009, 40, 1605–1614.
  • Berkelbach, T. C., Lee, H.-S. and Tuckerman, M. E., Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. Phys. Rev. Lett., 2009, 103, 238302–238306.
  • Hassanali, A., Giberti, F., Cuny, J., Kühne, T. D. and Parrinello, M., Proton transfer through the water gossamer. Proc. Natl. Acad. Sci., 2013, 110, 13723–13728.
  • Heyden, M. and Tobias, D. J., Spatial dependence of proteinwater collective hydrogen-bond dynamics. Phys. Rev. Lett., 2013, 111, 218101–218105.
  • Sigala, P. A. et al., Quantitative dissection of hydrogen bondmediated proton transfer in the ketosteroid isomerase active site. Proc. Natl. Acad. Sci., 2013, 110, E2552–E2561.
  • Bhatt, H., Mishra, A. K., Chitra Murli, Verma, A. K., Garg, N., Deo, M. N. and Sharma, S. M., Proton transfer aiding phase transitions in oxalic acid dihydrate under pressure. Phys. Chem. Chem. Phys., 2016, 18, 8065–8074.
  • Bhatt, H. et al., Hydrogen bond symmetrization in glycinium oxalate under pressure. J. Phys. Chem. B, 2016, 120, 851−859.
  • Takahashi, T. and Bassett, W. A., Bassett high-pressure polymorph of iron. Science, 1964, 145, 483–489.
  • Hemley, R. J., Bell, P. M. and Mao, H. K., Laser techniques in high-pressure geophysics. Science, 1987, 237, 605–612.
  • Hemley, R. J., Ho-kwang Mao, Shen, G., Badro, J., Gillet, P., Hanfland, M. and Häusermann, D., X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science, 1997, 276, 1242–1245.

Abstract Views: 235

PDF Views: 81




  • High Pressure:One of the many Tools to Study Material Properties at Extreme Conditions

Abstract Views: 235  |  PDF Views: 81

Authors

Nandini Garg
High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400 094, India

Abstract


High pressure is a powerful and clean variable, which when applied can bring about large changes in structure and properties of materials. It can be used to simulate the conditions found deep inside the earth or in different planetary interiors. It is widely used in chemical industry, especially when the chemical reaction products have lower volumes than the initial reactants, and also in the food preservation industry, where it ensures that aromas and flavours are not lost even after preservation. Materials under pressure can be studied both theoretically and experimentally. In this article apart from discussing how to set up a basic high pressure experiment using the DAC, some examples have been elaborated to show how both experiments and theory complement each other and both put together can help in a deeper understanding of the changes brought about by application of high pressure.

Keywords


Germanium Dioxide, High Pressure, Material Properties.

References





DOI: https://doi.org/10.18520/cs%2Fv112%2Fi07%2F1430-1443