The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In this study an airborne ground penetrating radar (GPR) is used to estimate spatial distribution of snow accumulation in the Samudra Tapu glacier (the Great Himalayan Range), Western Himalaya, India. An impulse radar system with 350 MHz antenna was mounted on a helicopter for the estimation of snow depth. The dielectric properties of snow were measured at a representative site (Patseo Observatory) using a snow fork to calibrate GPR data. The snow depths estimated from GPR signal were found to be in good agreement with those measured on ground with an absolute error of 0.04 m. The GPR survey was conducted over Samudra Tapu glacier in March 2009 and 2010. A kriging-based geostatistical interpolation method was used to generate a spatial snow accumulation map of the glacier with the GPR-collected data. The average accumulated snow depth and snow water equivalent (SWE) for a part of the glacier were found to be 2.23 m and 0.624 m for 2009 and 2.06 m and 0.496 m for 2010 respectively. Further, the snow accumulation data were analysed with various topographical parameters such as altitude, aspect and slope. The accumulated snow depth showed good correlation with altitude, having correlation coefficient varying between 0.57 and 0.84 for different parts of the glacier. Higher snow accumulation was observed in the north- and east-facing regions, and decrease in snow accumulation was found with an increase in the slope of the glacier. Thus, in this study we generate snow accumulation/SWE information using airborne GPR in the Himalayan terrain.

Keywords

Glacier, Ground Penetrating Radar, Snow Accumulation, Snow Water Equivalent.
User
Notifications
Font Size