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Audio signal categorization is one of the rudimentary 
steps in applications like content-based audio informa-
tion retrieval, audio indexing, speaker identification, 
and so on. In this work, a rigorous, non-stationary 
methodology capable of categorization among speech 
and various music signals is proposed. Multifractal 
detrended fluctuation analysis method is used to ana-
lyse the internal dynamics of the acoustics of digitized 
audio signal. The test data include speech (non-
musical), drone (periodically musical) and music sam-
ples of Rāgas (having different musicality) from  
Indian classical music (INDIC). It is found that the 
degree of complexity and multifractality (measured by 
width of the multifractal spectrum) changes from the 
start towards the end of each audio sample. However, 
the range of this variation is the smallest for speech 
and drone. The normalized value of the width of the 
multifractal spectrum is strikingly different for speech 
and drone. Experimental results show that this para-
meter can effectively classify speech and drone sig-
nals. Further, we have experimented with a number of 
clips of INDIC Rāgas with a range of variation in mu-
sicality and mood content. The results show that the 
width of the multifractal spectrum of the signals can 
categorize different music signals. In contrast with the 
conventional stationary techniques for audio signal 
analysis, we have used the method of complexity 
analysis without converting the non-stationary audio 
signals in frequency domain. We have used basic 
waveforms of the audio signals after de-noising them. 
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MUSIC is conventionally defined as an ordered arrange-
ment of sounds of different acoustic frequencies (pitches, 
tones) in succession (melody), of sounds in combination 
(harmony), and of sounds spaced in temporal succession 
(rhythm)1. However, which one of these is mainly res-
ponsible for the musicality of the signal, still remains  
unresolved. According to Mandelbrot2, the quality of a 
certain kind of sound remains unaffected even with a 
change in playing speed, which he termed ‘scaling noise’. 
White noise is the simplest scaling noise. The power 
spectral density S(f ) of a time series produced in accor-
dance with the temporal variation of white noise varies 
with f-frequency content, according to the relation 
S( f ) ∝ f β, where β is the scaling exponent. Brownian 

noise is another type of scaling noise with scaling expo-
nent β = 2. 
 According to Mandelbrot2, fractal is a geometric pat-
tern which is iterated at smaller or larger scales to pro-
duce self-similar, irregular shapes or surfaces that cannot 
be represented using Euclidian geometry. Fractal systems 
are infinite, i.e. they can extend to insurmountably large 
values of their coordinates, outwards in all directions 
from the centre. Another important feature of fractals is 
their self-similarity, i.e. smaller and bigger fragments of a 
system look similar, but are not necessarily identical, to 
the entire fractal system. To express self-similarity of the 
large and small, power law [a mathematical pattern in 
which the frequency of occurrence of a given size is  
inversely proportionate to some power (n) of its size.] is 
applied. This n is defined as the scaling exponent or the 
fractal dimension of the system. Fractals can be of two 
types: monofractals and multifractals. Monofractals are 
those whose scaling properties are the same in different 
regions of the system. Multifractals are more complicated 
self-similar objects which consist of differently weighted 
fractals with different non-integer dimensions. Hence 
their scaling properties are different in different regions 
of the systems3.  
 In nature, there exist many geometries which are frac-
tals, like the profile of a mountain or shape of snow-
flakes. If we investigate them closely, we can deduce 
self-similarity of the system. Music was originated in the 
sounds that nature produces, and hence music also has a 
fractal property like many other naturally occurring fluc-
tuations. Vincenzo Galilei was the first to analyse the 
numerology of music4. He pointed out that the octave can 
be obtained through different ratios of 2n : 1. It is 2 : 1 in 
terms of string length, 4 : 1 in terms of weights attached 
to the strings, which are inversely related to the cross-
section of the string, and 8 : 1 in terms of volume of 
sound-producing bodies, such as organ pipes. Studies 
have shown that an octave can be divided by the rule of 
equal temperament1,5. It is one of the most popular meth-
ods considered to play a musical composition harmoni-
cally in all keys. The first fractal analysis of music was 
carried out by Voss and Clarke6. They showed that it is 
pink noise or 1/f noise. Bak et al.7 also showed that this 
type of noise occurs often in nature. Tricot8 applied some 
fractal theories on self-affine functions, and found a 
power law relationship between power spectra and fractal 
dimension. Hsü and Hsü1,9 analysed the variations in 
pitch interval between successive notes in a series of  
music scores composed by Bach and Mozart, and showed 
that the incidence frequency approximately exhibits a 
power-law relationship. 
 Detrended fluctuation analysis (DFA) is a scaling 
analysis method where the scaling exponent (similar to a 
single-scale Hurst exponent) is used to quantify the long-
range correlation of stationary and non-stationary 
signals10. Shi11 employed the calculation method of the 
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Hurst exponent to examine the pitch sequence fashioned 
in folk songs and piano pieces. Gunduz and Gunduz12 
studied the mathematical structures of six songs by treat-
ing them as complex systems. From the above study, it 
can be summarized that apart from the frequency-domain 
stationary methods like Fourier power spectrum, tech-
niques like DFA have also been used to compute the 
Hurst exponent and the value of fractal dimension of the 
non-stationary music signal. But fractal dimension refers 
to the overall properties of the song sequence. Recent re-
search with complex systems showed that naturally 
evolving geometries and phenomena cannot be character-
ized by a single scaling ratio (as in monofractal system), 
as different parts of the system are scaled differently. 
Such a system is better characterized as a multifractal 
system13,14. Multifractal detrended fluctuation analysis 
(MFDFA) method has been applied successfully to study 
multifractal scaling behaviour of various non-stationary, 
scale-invariant time series15. MFDFA method is a robust 
tool for performing scaling analysis in case of nonlinear, 
non-stationary time series. Results obtained by this 
method turn out to be more reliable in comparison to 
methods like wavelet analysis, discrete wavelet transform, 
wavelet transform modulus maxima, detrending moving 
average, band moving average, modified detrended fluc-
tuation analysis, etc.16–18. It has been applied for analys-
ing various phenomena such as heart-rate dynamics, 
DNA sequences, neuron spiking, human gait and eco-
nomic time series as well as weather-related and earth-
quake signals.  
 In recent years works have been reported, where non-
stationarity and nonlinearity of the time series of music 
signals have been used to quantify the complexity/ 
musicality of the acoustic signal. As musicality in audio 
signal has naturally evolving geometry and non-uniform 
pattern in its progression, it is necessary to reinvestigate 
the musical structure from the viewpoint of the multifrac-
tal theory. Multifractal analysis of music has been carried 
out by some researchers19,20. Substituting both rhythm 
and melody by a geometrical sequence of points, Su and 
Wu19 showed that these quantities can be considered as 
multifractal objects. Although some work (as described 
above) has been done for Western Music under non-
stationary conditions, not much has been done for Indian 
music, specially Indian classical music (INDIC). Now-
adays, automatic classification and retrieval of audio or 
music information has become a significant area of  
research. An effective music and audio classification sys-
tem for INDIC built under non-stationary conditions, 
would be a step forward towards various applications like 
music or audio indexing, music information retrieval 
(MIR) and genre classification. Other applications in-
clude music learning in distant mode, performer recogni-
tion and music synthesis. 
 We have used MFDFA technique to measure temporal 
variation of self-similarity of the audio waveforms of 

various music and speech signals to reveal the internal  
dynamics of their so-called musicality. The width of the 
multifractal spectrum for the waveform of each audio 
sample is measured. First, the excerpts of speech and 
drone signals are used for the experiment. Drone signal 
has a perceived periodicity as its musical feature and 
thereby one can intuitively conclude that it is less multi-
fractal in nature. On the contrary, speech is believed to 
have less or no musicality in its nature and one can con-
clude that its multifractality is much higher than that of a 
drone signal. Experimental results justify this fact. For 
them, multifractality remains almost consistent through-
out the signal and the value of the spectrum width varies 
within a small range. Further, we have experimented with 
different kinds of Rāga in the INDIC domain and have 
compared the results among themselves and with the lim-
iting value of drone. The result shows that the range of 
variation of the spectrum width of music signals is much 
higher and different compared to the drone. Using these 
experimental inerences, the future road-map for a computa-
tional system for categorization of speech, drone and mu-
sic signals from INDIC can be initiated.  
 To study the musicality in INDIC, some details of the 
Rāga framework are analysed. It should be noted that 
acoustic signals like speech and music can be differenti-
ated by their musicality content. A sequence of notes, the 
rhythm, the mood, the temporal and spatial variation of a 
note sequence, the time of compositions – all create a 
multidimensional piece, called a musical composition. 
Corresponding to the framework of Western music, Rāga 
is the soul of INDIC. According to some studies21,22, 
Rāga, the nucleus of INDIC, may be defined as a melodic 
structure with fixed notes and a set of rules characterizing 
a certain mood conveyed by performance. Each Rāga  
expresses different moods in certain characteristic pro-
gressions. This Rāga framework contributes to the musi-
cality of INDIC system and makes it distinctly different 
from the Western music system. So, Rāga greatly con-
tributes towards fixing the degree of complexity of an 
audio signal for INDIC system. We can classify various 
compositions of INDIC by their Rāga-base.  
 The rest of the communication is organized as follows. 
First, the details of data are elaborated. The method of 
analysis and inferences from the test results are then  
presented followed by concluding remarks. 
 The experimental data are as follows:  
 
• Speech signal which has less amount of musical con-

tent. 
• Drone signal which contains more amount of periodi-

cally occurring musical content or sequence of notes 
according to INDIC system. 

• Signals of instrumental recordings of four music com-
positions of different Rāga-s eliciting different moods 
or emotions. Samples 1, 2 and samples 3, 4 in the test 
dataset are almost opposite to each other in terms of 
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mood content of the Rāgas. Table 1 shows the basic 
mood details for each sample. We have taken the 
opening (rhythmless) section of each composition,  
because this part introduces and develops the melodic 
modes or Rāgas.  

 
The speech, drone and rest of the music samples of 
160 sec duration, are in .wav format. Sampling frequency 
for the data is 44.1 kHz. Audio samples are encoded by 
16 bit-stream and are of single (mono) channel. The am-
plitude waveform is taken for testing. We have used em-
pirical mode decomposition method of Norden et al.23 for 
noise removal from the original signal. 
 Each 160 sec sample is divided among 80 samples of 
2 sec from start to end. Then, multifractal spectra of the 
whole signal and the segments are generated. Widths of 
the spectrum are denoted as follows: 
 
• W – Width of spectrum for the whole signal (160 sec).  
• w-Width of spectrum for the segmented samples 

(2 sec). 
 
These widths are calculated according to the method of 
Kantelhardt et al.15. The step-by-step process is described 
below. Software implementation is done in Matlab. Then 
the analysis of w and W is done for all the samples and 
inferences are drawn from it. 
 Step 1: Each digitized audio signal represents a time 
series having time instants in the x-axis and for each time 
instant a corresponding amplitude value in the y-axis. 
Suppose for a particular audio sample i = 1, 2, …, N, are 
the time instants and corresponding amplitude value is 
x(i). The mean of this time series is calculated as  
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Then the integrated series is computed according to eq. 
(1) of Kantelhardt et al.15 as follows 
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Table 1. Test music data and their characteristics according to the  
  Rāga framework 

Music  
sample Rāga Mood content 
 

Sample-1 Bahar Sprightly feeling 
Sample-2 Miyan-ki-malhar Create tension and restlessness,  
    anticipating separation and  
    unnamed fears 
Sample-3 Chhayanat Happiness 
Sample-4 Darbari kanada Sadness, seriousness and pathos  

Step 2: The integrated time series is divided into Ns non-
overlapping bins (where Ns = int(N/s), N is the length of 
the time series and s is the length of a single bin with re-
spect to the number of time instants), and the fluctuation 
function is computed. In our experiment s varies from 16 
as minimum to 1024 as maximum value in log-scale. For 
each s, the local RMS variation is calculated as function 
F(s, v), according to eq. (2) of Kantelhardt et al.15 as 
follows 
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where i = 1, 2, …, s and v = 1, 2,…, Ns. Here yv(i) is the 
least square fitted polynomial of the bin v. It is defined as 

1
0( ) ( ) ,m m

v k ky i C i −
== ∑  where Ck is the kth coefficient of 

the fit polynomial with degree m. Here we have taken m 
as 1.  
 Step 3: The qth order overall RMS variation for each 
scale s is denoted by Fq(s), which is calculated according 
to eq. (4) of Kantelhardt et al.15 as shown below 
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For our experiment we have calculated qth order RMS 
variation Fq(s) for 100 values of q ranging between (–5) 
and (+5). 
 Step 4: Steps 2 and 3 are repeated and  Fq(s) is calcu-
lated for various values of s. If the time series is long-
range correlated, the Fq(s) versus s for each q will show 
power law behaviour as Fq(s) ∝ sh(q). When one quantity 
varies as the power of another, then the quantities are said 
to be showing power law behaviour. If such a scaling  
exists, log2(Fq(s)) will depend linearly on log2(s), where 
h(q) is the slope. The exponent h(q) depends on q. Here 
h(q) is the generalized Hurst exponent. This h(q) of 
MFDFA is related to the scaling exponent τ(q) according 
to eq. (13) of Kantelhardt et al.15, i.e. 
 
 τ(q) = qh(q) – 1. 
 
Step 5: Multifractal signals have multiple Hurst expo-
nents. Hence τ(q) depends nonlinearly on q. If α is singu-
larity strength, the singularity spectrum is f (α). This is 
related to h(q) according to eq. (15) of Kantelhardt et 
al.15, i.e. 
 
 α = h(q) + qh′(q),  f(α) = q[α – h(q)] + 1.  
 
The resulting multifractal spectrum f (α) is an arc as 
shown for a test sample in Figure 1. The difference bet-
ween the maximum and minimum values of α, is called 
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the multifractal spectrum width. The width of the spec-
trum gives a measure of the multifractality of the time  
series.  
 In our experiment, first the width of the multifractal 
spectrum for the whole signal is calculated for each input. 
Then for each input, the whole signal is shuffled and the 
width of the multifractal spectrum for that shuffled signal 
is calculated. If there are long-range correlations in the 
original data, they will be removed by this shuffling and 
the sequence will become uncorrelated. Hence the width 
of the multifractal spectrum for the shuffled signal will be 
much less and different from the width of the multifractal 
spectrum for the original signal. This was found to be 
true for all the test samples of speech, drone and music 
signals used in our experiment. Figure 1 shows the multi-
fractal spectrum for one such original sample and its 
shuffled version. This test result clearly indicates that the 
multifractality in the speech, drone and music signals is 
due to their broad probability distribution and long-range  
correlation. The widths of the multifractal spectrum for 
the whole signal (W) and the width of the multifractal 
spectrum for the segments (w) of the same signal are  
calculated as per the above steps 1–5. The values of W 
and w are normalized within a range [0, 1].  
 Frequency histogram of w: For each of the segmented 
input signals wis are calculated, where i = 1, 2, …, 80. 
Then, the histogram for frequency of occurrence for a 
particular wi throughout the progression of the signal is 
formed. In this histogram, the ranges of wis are divided 
among a number of bins. Figure 2 shows the histogram 
 
 

 
 
Figure 1. Plot of α versus f (α) for the original and shuffled signal 
data. 
 
 

 
 
Figure 2. Frequency histogram of wis for a particular music sample. 

for a particular musical sample. The peak of the histo-
gram is denoted by wp, which is considered here as the 
width of the multifractal spectrum for the segmented  
signal.  
 Trend of W and w for speech and drone signals: wi-s, 
where i = 1, 2, …, 80, are plotted from the start towards 
the end of the signal for speech and drone. What we get 
from the trend are as follows: 
 
• Figure 3 shows that the respective wi-s vary within the 

range W ± t, where t = 0.15 for speech and t = 0.12 for 
drone signals. It is also evident from the figure that W 
for speech is much higher and different from the 
drone. 

• Figure 3 also shows that for both speech and drone 
signals, the respective W and wp are almost similar. 

• Finally if we compare both W and wp for speech and 
the drone (Figure 4), we can see that the parameters 
have a striking difference in values. Hence we can 
conclude that speech and drone signals can be distin-
guished by the width of their multifractal spectrum. 

 
 Trend of W and w for music and drone signals: As the 
difference between speech and drone is now been estab-
lished, we attempt to compare the progression of w-s for 
each of the musical samples with that of drone signal, as 
drone is believed to be most musically periodic in nature. 
The inferences are as follows: 
 
• Figure 5 shows that although the  wp-s for a particular 

music sample and drone are quite similar, their W-s 
are vastly different. This is because the w-s for the 
music signal change has a wider range of variation as 
compared to the drone signal. This results in a high 
value of W for music. So we can conclude that the 
multifractality of this particular music sample varies 
from very small to very high. 

• We have done similar kind of comparison for the  
remaining three music samples with the drone and 
found a range of values for w compared to the drone 
signal. This range may be considered as a parameter 
for categorization of different music signals.  

 
 We have compared the overall W-s for the music sam-
ples with W of the drone sample. The inferences are as 
follows: 
 
• Figure 6 shows that all W-s of the music samples are 

consistently higher than that of drone sample. It can 
be concluded that the drone signal contains the least 
amount of multifractality among all musical samples. 

• Figure 6 also shows that W for sample-1 is much 
higher compared to sample-2. This is also true for the 
samples 3 and 4. Table 1 shows that samples 1, 2 and 
samples 3, 4 have almost opposing mood contents  
according to the Rāga framework. We may conclude 
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Figure 3. Trend of W and w for speech and drone signals. 
 
 
 

 
 

Figure 4. Comparison of W and wp for speech and drone. 
 
 

 
 

Figure 5. Trend of W and w for music sample and drone signal. 
 
 
  that this opposing mood content contributes to the  

difference in W-s of the respective samples.  
 
 We can infer here that degree of complexity increases 
with increasing musicality. Hence the width of the multi-
fractal spectrum increases as we move from the drone 

towards music samples. Also, the degree of complexity 
varies largely for samples with mutually exclusive musi-
cality and mood content. Hence with the help of this pa-
rameter we may try to classify music samples with 
different musicality or mood content as an extension of 
this work.  
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Figure 6. Trend of W for music sample and drone signal. 
 
 
 In this work we have taken the initial step towards  
devising a non-stationary computation model for audio 
signal classification. Using MFDFA method, the widths 
of multifractal spectra for the whole signal as well as seg-
mented signal, have been calculated and analysed. These 
parameters make a clear distinction between speech and 
drone signals. The proposed parameters can also classify 
Rāga signals of the INDIC system, containing mutually 
exclusive musicality. The success in the experiment lends 
us to believe that we may hereafter be able to differenti-
ate and alienate the musicality and moods in different 
Rāgas which are mutually inclusive in some aspects and 
yet different in nature. More rigorous analysis of large 
samples of INDIC and Western music data with different 
genres of music conveying a variety of emotions, needs 
to be done to frame a computational system for MIR. The 
methodology may be extended to develop a framework to 
classify different types of music signals according to 
INDIC and Western music systems. 
 
 

1. Hsu, K. J. and Hsu, A. J., Fractal geometry of music. Proc. Natl. 
Acad. Sci. USA, 1990, 87(3), 938–941. 

2. Mandelbrot, B.. The Fractal Geometry of Nature, Henry Holt and 
Company, 1983, vol. 51(3), pp. 384–391. 

3. Chen, Z., Ivanov, P. Ch., Hu, K. and Stanley, H. E., Effect of 
nonstationarities on detrended fluctuation analysis. Phys. Rev. E., 
2002, 65(4), 041107–041111. 

4. Haar, J. and Palisca, C. V., Humanism in Italian Renaissance 
Musical Thought, Renaiss, Q., 1988, vol. 41(1), pp. 138–156. 

5. Madden, C. B., Fractals in Music: Introductory Mathematics for 
Musical Analysis, High Art Press, Salt Lake City, 1999. 

6. Voss, R. F., 1/f noise in music: Music from 1/f noise. J. Acoust. 
Soc. Am., 1978, 63(1), 258–263. 

7. Bak, P., Tang, C. and Wiesenfeld, K., Self-organized criticality: 
An explanation of the 1/f noise. Phys. Rev. Lett., 1987, 59(4), 
381–384. 

8. Tricot, C., Dimension fractale et spectre. J. Chim. Phys., 1988, 
85(1), 379–382. 

9. Hsü, K. J. and Hsü, A., Self-similarity of the 1/f noise called 
music. Proc. Natl. Acad. Sci. USA, 1991, 88(8), 3507–3509. 

10. Hausdorff, J. M., Purdon, P. L., Peng, C. K., Ladin, Z., Wei, J. W. 
and Goldberger, A. L., Fractal dynamics of human gait: stability 
of long-range correlations in stride interval fluctuations. J. Appl. 
Physiol., 1996, 80(5), 1448–1457. 

11. Shi, Y., Correlations of pitches in music. Fractals, 1996, 4(4), 
547–553. 

12. Gunduz, G. and Gunduz, U., The mathematical analysis of the 
structure of some songs. Physica A Stat. Mech., 2005, 357(3–4), 
565–592. 

13. Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C. K., 
Stanley, H. E. and Stanley, M. H. R., Fractal landscapes and 
molecular evolution: analysis of myosin heavy chain genes. 
Biophys. J., 1993, 65(6), 2673–2679. 

14. Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, 
S. and Bunde, A., Detecting long-range correlations with 
detrended fluctuation analysis. Physica A Stat. Mech., 2001, 
295(3–4), 441–454. 

15. Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., 
Bunde, A., Havlin, S. and Stanley, H. E., Multifractal detrended 
fluctuation analysis of nonstationary time series. Physica A Stat. 
Mech., 2002, 316(1–4), 87–114. 

16. Serranoa, E. and Figliola, A., Wavelet Leaders: a new method to 
estimate the multifractal singularity spectra. Physica A Stat. 
Mech., 2009, 388(14), 2793–2805. 

17. Oswiecimka, P., Kwapien, J. and Drozdz, S., Wavelet versus 
detrended fluctuation analysis of multifractal structures. Phys. 
Rev. E, 2006, 74(1), 016103–016109. 

18. Huang, Y. X., Schmitt, F. G., Hermand, J. P. and Gagne, Y., 
Arbitrary-order Hilbert spectral analysis for time series possessing 
scaling statistics: a comparison study with detrended fluctuation 
analysis and wavelet leaders. Phys. Rev. E, 2011, 84(1), 016208–
016215. 

19. Su, Z. Y. and Wu, T., Multifractal analyses of music sequences. 
Physica D: Nonlinear Phenom., 2006, 221(2), 188–194. 

20. Jafari, G. R., Pedram, P. and Hedayatifar, L., Long-range 
correlation and multifractality in bach’s inventions pitches. J. Stat. 
Mech. Theory Exp., 2007, 4, 04012–04019. 

21. Chakraborty, S., Krishnapriya, K., Loveleen, Chauhan, S. and 
Solanki, S. S., Analyzing the melodic structure of a north indian 
raga: a statistical approach. Electron. J. Musicol., 2009, XII. 

22. Bhatkhande, V. N., Hindustani Sangeet Paddhati Kramik Pustak 
Malika, Sakhi Prakashan, New Delhi, 1990. 

23. Norden, E. H. et al., The empirical mode decomposition and the 
Hilbert spectrum for nonlinear and non-stationary time series 
analysis. Proc. R. Soc. A Math. Phys. Eng. Sci., 1998, 454(1971), 
903–995. 

 
 
 
ACKNOWLEDGEMENT. We thank the Department of Higher Edu-
cation, Government of West Bengal, for logistics support. 
 
 
 
Received 29 August 2015; revised accepted 26 December 2015 
 
 
doi: 10.18520/cs/v110/i9/1817-1822 

 
 


