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Polarimetric classification is one of the most signifi-
cant applications of synthetic aperture radar (SAR) 
remote sensing. Sensitivity of C-band SAR in discern-
ing the variation in canopy roughness and limited 
penetration capability through forest canopy have 
been well studied at a given frequency, polarization 
and incidence angle. However, the scope of C-band 
SAR in characterizing and monitoring forest density 
has not been adequately understood with polarimetric 
techniques. The objectives of the present study were to 
understand the scattering behaviour of different land-
cover classes and evaluate the feasibility of polarimetric 
SAR data classification methods in forest canopy den-
sity slicing using C-band SAR data. The RADARSAT-
2 image with fine quad-pol obtained on 27 October 
2011 over Madhav National Park, Madhya Pradesh, 
India and its surroundings was used for the analysis. 
Forest patches exhibit -angle around 45, which 
means the dominant scattering mechanism is volume; 
entropy of one or a value close to it denotes distributed 
targets and low anisotropy values than all other land 
units, which shows a dominant first scattering mecha-
nism. This study comparatively analysed Wishart  
supervized classifier and Support Vector Machine 
(SVM) classifier for classification of the forest canopy 
density along with other associated land-cover classes 
for a better understanding of the class separability. 
All forest density classes showed comparatively good 
separability in Wishart supervized classification 
(73.8–84.7%) and in SVM classifier (82.3–84.8%). The 
results demonstrate the effectiveness of SVM classifier 
(88.7%) over Wishart supervized classifier (87.8%) 
with kappa coefficient of 0.86 and 0.85 respectively. 
The experimental results obtained with polarimetric 
C-band SAR data over dry deciduous forest area  
imply that SAR data have a significant potential for 
estimating stand density in operational forestry. 
 
Keywords: Forest density, microwave radiation, polari-
metric classification, synthetic aperture radar. 
 
FOREST cover mapping based on species identification 
and forest density is an important activity for forest man-
agement and biomass estimation, which in turn is crucial 
for global environmental monitoring. India is among the 
few countries in the world to start such a unique system 
of monitoring of forest cover at the national level. At  
present, Indian forests are monitored by optical remote 
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sensing data based on canopy crown density1. Most of the 
data in the assessment pertain to October–December sea-
son and non-availability of cloud-free data is a major  
impediment for the estimation. The ability of C-band mi-
crowave energy to penetrate within forest vegetation 
makes it possible to extract information on crown com-
ponents, which in turn gives a better approximation of 
stand density than optical data-derived canopy crown 
density. Synthetic aperture radar (SAR) signal, being sen-
sitive to plant canopy structure, size, orientation and 
moisture content of leaves, branches and trunks, is useful 
for forest density mapping. The literature provides details 
regarding the use of radar data for many types of applica-
tion and microwave radar have often shown to be more 
capable of certain remote sensing tasks than optical or 
thermal data2. Microwave interactions are sensitive to the 
roughness and physical geometry of forests3,4. This, when 
combined with the ability of microwave radiation to 
penetrate forest canopies results in a sensitivity of SAR 
backscatter to key biophysical variables such as tree den-
sity and aboveground biomass5–10. In a comparative 
evaluation of multi-frequency, multi-polarized SAR res-
ponse to plant density, highest sensitivity to plant density 
was observed in L-band cross-polarized backscatter11. 
The cross-polarization ratio (HV/HH and HV/VV) has 
been found to be the best parameter for retrieval of forest 
vegetation parameters5,6,10,12,13. Many of the studies related 
to application of SAR in forestry are reported from  
temperate regions and few studies were attempted in 
tropical regions. In Indian tropical regions, various at-
tempts have been made to establish the relationship be-
tween radar backscatter in C-, L- and P-bands and forest 
stand variables14,15. Alappat et al.16 have reported good 
correlation between L-band HV backscatter and forest 
stand volume, whereas L-band HH backscatter showed 
good correlation with forest stand density. The objective  
 

 
 

Figure 1. The extent of the study area shown on PauliRGB image. 

of the present study was to evaluate the feasibility of  
polarimetic SAR data classification methods in forest 
canopy density classification using C-band data. 
 Madhav National Park, one of the oldest National 
Parks (354 sq. km) in Madhya Pradesh, India, established 
in 1956, was taken as the study site along with its surround-
ing areas (Figure 1). The Park is bounded by geo-
coordinates 7715–7830E and 2450–2555N. The 
forests of this Park are tropical dry deciduous and exhibit 
considerable variation in species gregariousness and densi-
ties. Major vegetation types following the forest type 
classification of Champion and Seth17 are gregarious 
formations of Anogeissus pendula, Boswellia serrata, 
Butea monosperma, Acacia catechu and dry deciduous 
forest. The RADARSAT-2 image with the fine quad-pol 
(FQ5) and single look complex (SLC) obtained on 27 Oc-
tober 2011 was used in this study. The image has a full 
polarization of HH, HV, VH and VV, with a range resolu-
tion of 4.73 m and azimuth resolution of 4.96 m (1 : 1.05). 
 Polarimetric target decomposition is a technique that 
helps in understanding the scattering mechanism involved 
when a target interacts with SAR. The Radarsat 2 data of 
the study area were imported in PolSARpro software to 
generate scattering matrix and thus by coherency matrix. 
The reflectivity of the area being observed at a given radar 
wavelength can be represented by a ‘scattering matrix’ as 
shown below 
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Each of the four complex elements of this matrix is the 
amplitude and phase of the backscattered radiation as  
measured at one of four orthogonal transmit/receive  
polarizations – HH, HV, VH and VV. In radar polarimetry, 
scattering matrix is transformed into vector format in  
order to achieve decompositions. Thus, the target vector 
kp can be constructed based on the Pauli basis 
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This is a 3  3 positive semi-definite hermitian coherency 
matrix where the superscript T denotes the matrix trans-
pose. The 2  on the term is to ensure consistency in the 
span (total power) computation. Speckle confers to SAR 
images a granular aspect with random spatial variations. 
Lee sigma filter was used for polarimetric speckle filter-
ing of the data18,19. The characteristic decomposition of 
target coherency matrix for incoherent target decomposi-
tion introduced by Cloude20 was used for the present 
study. The classification technique used here is based 
upon polarimetric decomposition classification parame-
ters: entropy (H), anisotropy (A) and alpha () angle21. 
The H/A/ set of parameters was derived from an eigen-
value decomposition of the coherency matrix. The eigen-
vectors and eigenvalues of the coherency matrix [T] were 
calculated to generate a diagonal form of the coherency 
matrix which can be physically interpreted as statistical 
independence between a set of target vectors. Therefore, 
the eigenvalues of [T] have direct physical significance in 
terms of the components of scattered power into a set of 
orthogonal unitary scattering mechanisms given by the 
eigenvectors of [T], which for radar backscatter forms  
the columns of a 3  3 unitary matrix. Hence an arbitrary  
coherency matrix can be written in the form 
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and [U3] = [u1 u2 u3] is a unitary matrix given by 
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where u1, u2 and u3 are the three unit orthogonal eigen-
vectors. 
 There are three variables of interest to derive, two from 
the eigenvalues, namely the entropy H and anisotropy A, 
and one from the eigenvectors, the  angles. The parameter 
 is an indicator of the type of scattering mechanism, and 
it ranges from 0 to 90. These parameters are easily 
evaluated as22 
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To introduce the degree of statistical disorder of each  
target, entropy is defined from the logarithmic sum of  
eigenvalues of the coherency matrix as 
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The entropy H represents the randomness of the scatter-
ing. H = 0 indicates a single scattering mechanism (iso-
tropic scattering), while H = 1 indicates a random mixture 
of scattering mechanisms with equal probability and 
hence a depolarizing target. The anisotropy A is a para-
meter complementary to the entropy. The anisotropy 
measures the relative scattering of the second and third 
eigenvalues of the eigen-decomposition. It is given by 
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In the present study, supervized classification techniques 
like Wishart supervized classifier23,24 and support vector 
machine (SVM) classifier25 have been used for the classi-
fication of data. Forest density has been categorized into 
very dense forest (>70%), dense forest (40–70%), open 
forest (10–40%) and scrubs and blanks (<10%) according 
to the classification approach adopted by the Forest Sur-
vey of India1. The Wishart supervized polarimetric classi-
fication scheme performs a maximum likelihood (ML) 
statistical classification of a polarimetric dataset based on 
the multivariate complex Wishart probability density 
function of second-order matrix representations. In the 
first step, the classifier ‘learns’ the Wishart statistics of 
user-defined training areas. The whole dataset is then 
classified by assigning each pixel to the closest class  
using a ML decision rule. The SVM theory is based on 
statistical learning theory and the minimization principle 
to structure risk. The basic principle of the SVM is to 
find the optimal linear hyper plane such that the expected 
classification error for unseen test samples is minimized. 
On the basis of this principle, a linear SVM uses a sys-
tematic approach to find a linear function with the lowest 
‘Vapnik–Chervonenkis’ dimension25. For nonlinear sepa-
rable data, the SVM can map the input to a high dimen-
sional feature space where a linear hyper plane can be 
found. Therefore, a good generalization can be achieved 
by the SVM compared to conventional classifiers. 
 The coherency matrix is closely related to the physical 
and geometric properties of the scattering process, and 
thus allows better and direct physical interpretation.
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Figure 2. Alpha angle (a), entropy (b), anisotropy (c) and RGB (d) of the study area. 
 
 
Polarimetric target decomposition is a technique that 
helps in understanding the scattering mechanism that is 
involved when a target interacts with SAR. The SAR  
polarimetric analysis leading to the computation of  
entropy, anisotropy and alpha angle is useful for under-
standing the scattering process. The first diagonal ele-
ment of the coherency matrix gives information about 
single-bounce scattering; the second diagonal element 
gives information about double-bounce scattering and the 
third diagonal element gives the information about  
volume scattering21. 
 The model suggested by Cloude and Pottier21 has been 
employed to derive entropy, alpha angle and anisotropy 
segmentation to characterize the image in terms of its 
scattering mechanism. Alpha angle is indicative of the 
average or dominant scattering mechanism. It describes 
the dominance of the scattering mechanism in terms of 
volume, double bounce or surface scattering. The lower 
limit of  = 0 indicates surface scattering;  = 45 indi-
cates dipole or volume scattering, while the upper limit of 

 = 90 represents a dihedral reflector or multiple scatter-
ing (Figure 2 a). As represented in Figure 2 a, much of 
the study area exhibits -angle around 45, which means 
the dominant scattering mechanism is volume. Dihedral  
reflector or multiple scattering occurs in the settlement 
area. Entropy is a measure that indicates the randomness 
in the target vector. For pure targets the entropy is zero, 
whereas for distributed target entropy is one. In the study 
area, mainly forest patches show entropy of one or a 
value close to it denotes distributed targets and water 
body exhibits entropy of zero (Figure 2 b). The entropy–
alpha space was not able to distinguish the number of 
scattering mechanisms and their relative dominance. By 
introducing anisotropy, which is a measure of the number 
of dominant scattering mechanisms involved in the scat-
tering process, it is feasible to achieve better discrimina-
tion between the different scattering classes21. Anisotropy 
is useful to differentiate scattering mechanisms which 
have different eigenvalue distributions but similar  
entropy values. When the entropy values for two clusters 
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are the same, a high anisotropy value shows two domi-
nant scattering mechanisms with equal chance of occur-
rence and a less significant third mechanism, whereas a 
low anisotropy value shows a dominant first scattering 
mechanism and two insignificant secondary mechanisms 
with equal importance. Anisotropy gives the homogeneity 
of a target with reference to the radar look direction. For 
homogeneous target, low anisotropy value is observed. In 
the study site forested area mainly exhibits low anisot-
ropy values than all other land units, which shows a 
dominant first scattering mechanism, i.e. volume scatter-
ing and two insignificant secondary mechanisms with 
equal importance (Figure 2 c). Settlement areas show 
high anisotropy values because of two dominant scatter-
ing mechanisms with equal chance of occurrence and a 
less significant third mechanism. 
 Wishart supervized classification was performed  
according to the defined training areas on coherency  
matrix. A total of eight classes were identified in the 
study area, including cropland, fallow land, settlement, 
water body and four forest density classes. The ground 
truth information collected from the study area using GPS 
overlaid on 2.5 m resolution Cartosat1 data of Indian re-
mote sensing satellite for cross-checking and verification. 
This information has been used as training classes in the 
classification stage. PauliRGB image was used for giving 
the training areas. The whole dataset was then classified 
by assigning each pixel to the closest class using a maxi-
mum likelihood decision rule (Figure 3). All forest den-
sity class pixels show good classification results (above 
73.8%) as represented in the confusion matrix (Table 1). 
Dense forest shows comparatively less percentage (73.8) 
of correctly classified pixels among the forest density 
classes. This is mainly because of the misclassification of 
pixels of this class into open forest. Among other classes, 
water body pixels show good classification results 
(98.9%) followed by croplands (84.6%). The overall  
classification accuracy observed for Wishart supervized 
classification is 87.8% and kappa coefficient of 0.85. 
 The SVM method is based on the determination of the 
optimal hyperplane of the input data space that maxi-
mizes the distance separating the training classes. When 
such a hyperplane cannot be found, training vectors are 
projected into a higher-dimensional space (the feature 
space) in which the search for the optimal hyperplane 
will be replayed. The projection of the problem in the 
feature space is significantly simplified by the use of a 
kernel. In a first step, the classifier ‘learns’ the SVM by 
defining the hyperplane based on user-defined training 
areas, and defines a SVM model. The whole dataset is 
then classified by assigning each pixel to the closest class 
using the hyperplane side. SVM uses kernel functions to 
map nonlinear decision boundaries in the original data 
space into linear ones in a high-dimensional space. There 
are many kernel functions in SVM like linear, polyno-
mial, radial basic function (RBF) and sigmoid. RBF  

kernel, which is one of the most popular and has fewer 
numerical difficulties26, was used in this study to classify 
the pixels. The optimization parameter calculated a cost 
parameter of 16,384 and gamma parameter of one for the 
classification. The RBF kernel nonlinearly maps samples 
into a higher dimensional space unlike the linear kernel 
and RBF has less hyperparameters than the polynomial 
kernel. The RBF kernel has less numerical difficulties. 
 SVM supervized classification was performed (Figure 
4) on coherency matrix according to the defined training 
areas which have been used for Wishart supervized  
 
 
 

 
 

Figure 3. Wishart supervized classification results of the study area. 
 
 
 

 
 

Figure 4. SVM classification results of the study area. 
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Table 1. Confusion matrix of Wishart supervized classification 

 C1 C2 C3 C4 C5 C6 C7 C8 
 

C1 Water body 98.95  0.00  0.00  0.04  0.07  0.06  0.00  0.87 
C2 Settlement  0.00  43.49  6.71  0.00  0.38  12.23  37.19  0.00 
C3 Cropland  0.00  0.06  84.62  0.20  6.38  8.33  0.37  0.04 
C4 Fallow land  0.00  0.00  1.17  58.09  1.09  0.13  0.23  39.30 
C5 Open forest  0.00  0.00  3.59  0.01  83.66  11.07  0.00  1.66 
C6 Dense forest  0.00  0.02  6.01  0.00  15.64  73.88  4.46  0.00 
C7 Very dense forest  0.00  4.01  3.60  0.00  0.59  7.03  84.77  0.00 
C8 Degraded forest/scrub 2.85  0.00  0.12  13.79   1.04  0.01  0.00  82.20 

 
Table 2. Confusion matrix of support vector machine classification 

 C1 C2 C3 C4 C5 C6 C7 C8 
 

C1 Water body 98.71 0.04  0.00  0.06  0.04  0.04  0.00  1.11 
C2 Settlement  0.13  86.93 2.01 0.08  0.20  2.26  8.39  0.00 
C3 Cropland  0.00  0.96  89.31 0.71 4.21  4.62  0.19  0.00 
C4 Fallow land  0.02  0.26  0.94 66.06 0.32 0.04  0.08  32.28 
C5 Open forest  0.00  0.02  2.34  0.35  84.81 11.83 0.00 0.64 
C6 Dense forest  0.00  1.50  4.87  0.01  8.44 82.86 2.33 0.00 
C7 Very dense forest  0.08  7.53  1.97  0.10  0.42  5.23  84.68 0.00 
C8 Degraded forest/scrub 1.65  0.00  0.13 15.10 0.75 0.01  0.00  82.37 

 
 
classification. All forest density class pixels show better 
classification accuracy compared to Wishart supervized 
classification as represented in the confusion matrix 
(82.3–84.8%). Degraded forest shows comparatively less 
percentage (82.3) of correctly classified pixels among the 
forest density classes (Table 2). This is mainly because of 
the misclassification of pixels of this class into fallow 
land pixels. Among other classes water body pixels show 
good classification results (98.7%). The overall accuracy 
and kappa coefficient observed for SVM supervized clas-
sification are 88.74% and 0.86 respectively. 
 The present study analysed the scattering behaviour of 
dominant land-cover classes of tropical regions of India 
and evaluated the feasibility of using polarimetric SAR 
data classification methods in forest canopy density slic-
ing using C-band SAR data. Forest patches exhibit -
angle around 45, which means the dominant scattering 
mechanism is volume; entropy of one or a value close to 
it denotes distributed targets and low anisotropy values 
than all other land units, which shows a dominant first 
scattering mechanism. Wishart supervized classifier and 
SVM classifier were used for the classification of the 
SAR data for forest density slicing. All forest density 
classes show comparatively good separability in Wishart 
supervized classification (73.8–84.7%) and SVM classi-
fier (82.3–84.8%). Comparative analysis reveals that 
SVM supervized classifier gives better classification  
accuracy (88.7% and 0.86) for forest density discrimina-
tion than Wishart classifier (87.8% and 0.85) for classifi-
cation of forest density according to the overall accuracy 
and kappa coefficient. If classification is considered  
under forest mask, better accuracy can be achieved.  
C-band SAR data-derived information on crown compo-

nents gives a better approximation of stand density than 
optical data derived canopy crown density. The limita-
tions associated with optical data like non-availability of 
cloud-free data and misclassification because of gregari-
ous occurrence of bushy vegetation like Lantana can be 
overcome using C-band SAR data. 
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Phenological events of rhododendron (Rhododendron 
arboreum Sm.) were monitored along elevation gradi-
ents in distinct ecological settings. The observations 
were carried out between 1500 and 2500 m elevation 
in Central Himalaya. The phenological events, i.e. bud 
formation, bud bursting, leafing, flowering, fruit for-
mation and seed formation were recorded. Phenologi-
cal duration and synchrony of all these phenophases 
were determined within site and along the elevation 
gradient in each study site. Our observations showed 
high synchrony throughout the elevation gradient,  
especially for peak flowering. Temperature, rainfall, 
age of the observed trees and site characteristics were 
related to initial and peak flowering dates. The  
circumference varied from 35.0  2.73 to 140.0  
2.88 cm; similarly, height varied from 5.0  1.02 to 
16.5  1.41 m. All the phenological events began early 
at low elevation and were delayed at higher elevation. 
R. arboreum had a sharp flowering peak from January 
to March. Wet season flowering was rare, and seed 
formation occurred in summer. The climatic condi-
tions affected the phenological characters of R. arbo-
reum.  
 
Keywords: Climate change, elevation gradient, pheno-
logy, Rhododendron arboreum. 
 
RHODODENDRON arboreum Sm. (local name – Burans, 
family – Ericaceae) is one of the most important small,  
evergreen and a major under canopy tree species in the 
Central Himalayan forests. It is widely distributed from 
1000 to 2500 m elevation in Kumaun Himalaya. Common 
associates of this tree are about 16 trees and 19 shrubs. At 
low elevation, it mixes with chir pine and broadleaf spe-
cies, while at high elevation it remains either as under 
canopy species in Quercus semecarpifolia forest or 
dominates as canopy species in some location near tim-
berline. R. arboreum is distributed from subtropical to 
temperate forests. The subtropical forests are located 
along an altitudinal gradient and exhibit limited day 
length variation within the annual cycle. However, tem-
perature, particularly at higher elevation approaches those 
of temperate latitudes. Phenological observations provide 


