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Rice is the major staple food crop for more than half 
of the world’s population, but its productivity is often 
reduced by drought, especially when grown under 
rainfed conditions. Identification of molecular mark-
ers associated with plant production traits under 
drought, especially in the target populations of the  
environment (TPE) presents an opportunity to  
improve rainfed rice production using genomics tools. 
Marker–trait associations were studied using 1168 
simple sequence repeat (SSR) markers and 911,153 
single nucleotide polymorphisms (SNPs) with 17 di-
verse rice lines from different geographical regions 
and hydrological habitats. STRUCTURE analysis dis-
criminated the rice accessions into three subpopula-
tions. Significant genotypic linkage disequilibrium 
(LD) was found in the rice accessions using SSR 
markers. A total of 130 and 118 water–trait associa-
tions were obtained with SSR and SNP markers re-
spectively, under stress. Comparison of SSR and SNP 
marker–trait associations revealed 23 consistent asso-
ciations. Five marker–trait associations with genic 
SNPs were observed out of 23 associations. These ge-
nomic regions may be potential candidates for appli-
cation in marker-assisted breeding of rice cultivars 
suitable for water-limited environments.  
 
Keywords: Drought tolerance, linkage disequilibrium, 
marker–trait association, rice. 
 
RICE is a staple food for nearly half of the world’s popu-
lation1. To meet the projected demands due to increasing 
global population, the world’s rice production has to  
increase by 25% or more by 2030 (ref. 2). Drought is a 
major abiotic stress limiting rice production and yield 
stability in rainfed ecosystems3 and it reduces rice pro-
ductivity by 13–35% (ref. 4). Nearly 38% of the total rice 
area is under rainfed lowland and upland conditions, but 
it contributes only 21% of the total rice production and a 
large portion of projected increase has to come from this 
water-limited area5. Mapping genomic regions for drought 
tolerance and their use in marker-assisted breeding is 

considered to hasten development of high-yielding rice 
for water-scarce environments. Although traditional QTL 
mapping is an important tool in QTL tagging6–9, it is  
resource-intensive and time-consuming. These limitations 
can be overcome with the use of association mapping10. 
This is a powerful tool used for high-resolution mapping 
of loci underlying quantitative traits such as drought  
tolerance. It takes advantages of accumulated historic  
recombination events in the natural population and is 
promising for identifying causative polymorphisms of 
complex traits11. Independent marker development which 
is distributed throughout the genome with available  
statistical methods was used to detect population struc-
ture12,13. The successful association analysis must be able 
to avoid spurious association from population structure or 
unequal relatedness within population14. Yu et al.15  
demonstrated population structure (Q) with relative kin-
ship (K) matrices for mixed-model association mapping  
to correct the linkage disequilibrium (LD) caused by 
population structure and familial relatedness. Thus, 
marker-based kinship estimates might be appropriate for 
association mapping approaches and this method has 
been shown to perform better than other alternatives15,16. 
 The extent of LD varies among the populations within 
the species and also across the genome of the species  
under study17, and distribution pattern has the potential to 
enhance and accelerate genetic resource management  
activities18. Simple sequence repeat (SSR) and simple nu-
cleotide polymorphism (SNP) are the most informative 
genetic markers useful for genetic diversity studies19–21 
and mapping22,23. Agrama et al.24 used the mixed linear 
model (MLM) method to disclose the associations  
between 123 SSR markers and yield components in rice. 
Zhao et al.25 studied 130 rice accessions with 170 SSR 
markers to identify marker–trait associations by MLM for 
grain quality. There are numerous reports on genome-
wide association studies (GWAS) in rice using SNPs. 
Zhao et al.26 reported GWAS using 44,100 SNPs with 
413 rice accessions. Huang et al.27 used ~3.6 million 
SNPs with 517 rice landraces. Lakew et al.28 demonstrated 
association mapping of drought-related traits in barley  
using SSR and SNP markers. Yang et al.29 reported that 
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SSR markers provided more information on genetic  
diversity and performed better at clustering all lines into 
groups than SNPs. Since both the DNA markers are effi-
cient at association mapping and population studies, we 
used both SSR and SNP markers for association mapping 
by MLM. Though there are numerous studies on the dis-
covery of significant marker–trait associations through 
GWAS, only few of these have been validated. Identify-
ing marker–trait associations in target populations of the 
environment (TPE) will help increase their application in 
breeding. Thus, the study was conducted with the specific 
objective of identifying consistent SSR and SNP markers 
for plant production traits under drought in target rainfed 
environment using 17 diverse rice accessions. 

Materials and methods 

Plant materials and field experiment 

Seventeen rice accessions out of 20 lines included in the 
Oryza SNP panel were used in the present study and 
tested for plant phenology and production traits. N22, 
Azucena and Moroberekan are drought-tolerant30, and 
FR13A is submergence-tolerant and moderately drought-
tolerant31. Though the number of genotypes used in this 
study is small, they represent diverse variation in terms of 
hydrological habitat and response to drought (Table 1). 
Association analyses of diverse germplasm are perfectly 
suited for sampling a wide range of alleles with high 
resolution32. Seeds of the rice accessions were received 
from the International Rice Research Institute (IRRI), Phil-
ippines. The geographical origin, ecotype and hydrologi-
cal habitat/drought response of the accessions are given 
in Table 1. The rice lines were tested for phenology and 
plant production traits under drought in rainfed environ-
ment. Phenotyping of the rice lines was done under 
drought during rainfed (northeast monsoon) season  
(September 2012–January 2013) in experimental fields of 
Agricultural Research Station (ARS), Tamil Nadu Agri-
cultural University (TNAU), Paramakudi located in TPE. 
The rice lines were evaluated under irrigated (flooded) 
condition during May–October 2013 in the Paddy Breed-
ing Station (PBS), TNAU, Coimbatore. 
 The rice lines were evaluated in 2.0  0.4 sq. m plots 
under drought in rainfed condition at ARS, Paramakudi in 
randomized block design with three replications. Seeds 
were hand-dibbled into dry soil (80 kg/ha) before mon-
soon. With initial rainfall of 52.5 mm, the seeds germi-
nated and seedlings emerged. However, there was no rain 
after 40 days after emergence (DAE) and hence irrigation 
was given once at 60 DAE to save the plants from desic-
cation. After this, stress developed coinciding with repro-
ductive stage. Stress continued and severe leaf rolling 
(LR) was observed in almost 90% of the lines. The repro-
ductive stage drought stress was severe and some of the 

entries dried in this stress period. During this trial, a total 
of 354 mm rainfall was received during the crop growth. 
NPK fertilizers were applied at the rate of 50 : 25 : 

25 kg/ha. 
 The rice lines were also evaluated in flooded (irrigated) 
condition in PBS, Coimbatore. Seeds were sown in raised 
nursery beds and 26-day-old seedlings were transplanted 
in the main field with a spacing of 20  10 cm in 
1.2  0.2 sq. m plots. The plots were surface irrigated to 
field capacity at regular intervals. NPK fertilizers were 
applied at the rate of 100 : 50 : 50 kg/ha. Insect and weed 
control measures were applied periodically as required in 
both trials. 
 In both trials, observations were recorded for days to 
50% flowering as the number of days from sowing to  
flowering in 50% of plants of each accession. At matur-
ity, plant height, number of reproductive tillers and grain 
yield per plant were recorded from three plants selected 
random per replication. Spikelet fertility was calculated 
as the ratio of the number of filled grains to the total 
number of grains per panicle. All the matured panicles 
from the selected plants per accession were used for 
spikelet fertility measurement. All the plants in a plot 
were harvested to record grain and straw yields per plot 
and expressed in kg/ha. Above-ground biomass was arrived 
at by summing up grain and straw yields. Harvest index 
was estimated as a ratio of grain yield to above-ground 
biomass. 

Statistical analysis 

Analysis of variance for each trait in different experi-
ments was done as mixed models using PROC MIXED 
procedure of SAS V.9.3 (SAS Institute Inc.)33, where 
lines were kept as fixed effect and other variables were 
assigned as random. Broad sense heritability of different 
traits was estimated within a year for each location. The 
variance components for calculating broad sense herita-
bility for each trait were calculated using SAS program 
PROC VARCOMP with REML method. The broad sense 
heritability was calculated as 
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G  is the genotypic variance, 2
e  the residual 

variance and r is the number of replications. PROC 
SUMM was used for summary statistics calculations for 
the two trials in SAS. 

Molecular markers 

A set of 911,153 SNPs for the 17 accessions was obtained 
from OryzaSNP project, an oligomer array-based 
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Table 1. Geographical origin, ecotype and nature of 17 rice (Oryza sativa) accessions used in the study 

IRGC accession 
no. Designation Origin Variety class Ecotype 
 

117275 Pokkali India  Landrace Indica 
117266 Dular India  Landrace Aus 
117279 Tainung 67 Taiwan AV  Temperate Japonica 
117281 Aswina Bangladesh Landrace Deep-water type 3 
117273 N22 India  Landrace*  Aus 
117276 Sadu-Cho Korea Landrace Indica 
117267 FR13A India  Landrace** Aus 
117264 Azucena  Philippines  Landrace* Tropical Japonica 
117265 Dom-Sufid Iran Landrace  Aromatic 
117277 Shan-Huang Zhan-2 (SHZ-2) China AV  Indica 
117270 M202 United States of America  AV  Temperate Japonica 
117280 Zhenshan 97B China AV Indica 
117271 Minghui 63 China AV Indica 
117274 Nipponbare Japan AV Temperate Japonica 
117272 Moroberekan Guinea Landrace* Tropical Japonica 
117269 Li-jiang-Xin-Tuan-Hei-Gu (LTH) China AV Temperate Japonica 
117268 IR64-21  Philippines  AV Indica 

IRGC, International Rice Genebank Collection; AV, Advanced Variety; *Drought tolerant, **Submergence tolerant and moderately 
drought tolerant. 

 
 
re-sequencing effort using Perlegen Sciences technology34 

and used for further studies. A total of 1168 SSR markers 
selected randomly covering the 12 rice chromosomes 
were obtained from http://www.gramene.org and used for  
genotyping the 17 rice accessions and for developing a 
separate SSR genotypic dataset. Thus, the average  
number of polymorphic SSR and SNP markers was 42 
and 13,333 respectively, for each chromosome. 
 Genomic DNA was extracted using fresh seedling 
leaves following a CTAB procedure35. The quantity and 
quality of DNA was assessed in 0.8% agarose gel and 
concentration was adjusted to 50 ng/l by comparing 
DNA standards. Polymerase chain reaction (PCR) ampli-
fication was performed in a volume of 20 l containing 
each SSR primer of 1 m (Sigma Aldrich, USA), 100 M 
deoxy nucleotide, 1 Taq buffer, 0.02 U Taq polymerase 
(Bangalore Genei, India) and 50 ng of template DNA. 
PCR was performed in a thermal cycler (Master Cycler 
Gradient, Eppendorf, Germany). After 5 min at 94C, the 
PCR involved 36 cycles of amplification, each cycle 
comprising 1 min at 94C, 1 min at 57C (depending on 
the annealing temperature of the markers), 1 min at 72C 
and with a final extension step of 5 min at 72C. The  
digested PCR products of the SSR marker were separated 
by electrophoresis in 3% agarose (BioWhittaker Molecu-
lar Applications, Vallensbaek Strand, Denmark)36 in 0.5 
tris-borate EDTA (TBE) buffer. Information on primer 
sequences and PCR amplification conditions for each set 
of primers is available at http://www.gramene.org/. 

Genetic diversity and population cluster 

The number of alleles per locus, major allele frequency, 
gene diversity, polymorphism information content (PIC) 

were calculated from the SSR genotypic data using  
PowerMarker version 3.25 (ref. 37). Nei’s distance38 was  
calculated and used for the unrooted phylogeny recon-
struction using neighbour-joining method as implemented 
in PowerMarker, and MEGA 5.0 was used to visualize the 
tree39. The software package, STRUCTURE version 2.3.1 
was applied to infer historical lineage which used to show 
clusters (Q) of genotypes12. The optimum number of 
populations (K) was selected with a burn-in period of 
100,000 steps followed by 100,000 (Monte Carlo Markov 
chain replicates). The range of genetic clusters is set from 
K = 1 to K = 10. Each value of K was replicated 5 times40. 
On-line available tool ‘structure harvester’ was used 
(http://taylor0.biology.ucla.edu) to calculate the final 
population structure. 

Linkage disequilibrium estimation 

Using SSR markers, interallelic LD was computed using 
the software MIDAS (Multiallelic Interallelic Disequilib-
rium Analysis Software)41 by accounting the multiallelic 
SSR markers in calculating r2 in all the possible interalle-
lic associations. Since they are phase-unknown genotypic 
data, haplotype frequency was estimated using EM algo-
rithm and it stratifies them as two locus haplotypes into 
N/N, N/Y and Y/Y. N/Y and Y/Y are used for LD calcu-
lation, excluding the rare alleles N/N. Significant P-value 
was identified using Yates-corrected chi-square test and 
the LD decay plot was plotted using pairwise r2 values 
against distance (kb). Map positions of the markers were 
based on Gramene marker database. The overall LD (r2) 
decay plot with physical distance (bp) among the  
SSR loci was evaluated by nonlinear regression (NLR). 
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Hill and Weir42 model was used for NLR fitting of the 
expectation of r2. 
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where C is the population recombination parameter 
(C = 4Nc, N being the effective population size and c the 
recombination fraction between the loci pair considered), 
and C was replaced with product of C and genetic dis-
tance in cM. McNally et al.34 reported a detailed analysis 
and discussion on LD using 911,153 SNPs. 

Mixed linear model for association analyses 

The kinship matrix K was calculated on the basis of the 
505 SSR marker loci using the software package 
SPAGeDi43. MLM was applied to study the links between 
marker loci and phenology while plant production traits 
under drought stress and non-stress conditions were ana-
lysed using the TASSEL (Trait Analysis by aSSociation 
Evolution and Linkage) version 3.1 software44, taking 
into account Q + K with P3D method implemented in 
TASSEL. The P-value (marker) was used for determining 
whether a marker (QTL) is associated with the trait. The 
911,153 SNP dataset from rice lines was analysed with 
the GWAS tool GAPIT R package45. The PC matrix was 
generated automatically by setting GAPIT parameters 
pca.total to 3, and applied for kinship matrix estimations 
and compressed MLM45. 

Results and discussion 

Variation in phenology and plant production traits 

In the drought stress trial there was no rainfall after 
40 DAE till maturity and the moisture in the field was in-
sufficient to install PVC pipes for water-table measure-
ments. Significant variation was observed among the rice 
lines for phenology and plant production traits both under 
drought stress and non-stress conditions. Trait mean, 
range, standard deviation and broad sense heritability are 
presented in Table 2. Since there was no rainfall after 
40 DAE, plants under irrigated plots also suffered stress 
due to depletion of water in the borewell. In this study, 
heritability range for grain yield was 0.93 and ~0.80 for 
the remaining traits. Jin et al.46 calculated the heritability 
for association mapping using 416 rice accessions and 
high heritability (approximately > 0.90 range) was re-
ported. Li et al.47 reported high heritability using 203 rice 
accessions for 14 traits in association mapping. High 
heritability for grain yield in drought stress indicates uni-
formity of drought phenotyping and high stability of the 
identified association. Moderate heritability (0.56) was 

observed in previous studies (unpublished) using the 
same set of rice accessions. This moderate to high herita-
bility under drought stress indicates the suitability of 
grain yield as an important criterion48,49. 
 Mean days to 50% flowering of the rice lines were 102 
and 87 in stress and non-stress condition respectively. 
Mean spikelet fertility across rice lines was 83% and 85% 
in stress and non-stress condition respectively (Table 2). 
Grain yield ranged from 558 to 1667 and 44 to 6607 with 
a mean of 946 and 2874 kg/ha in stress and non-stress 
condition respectively. The heritability for grain yield 
was 0.93 and 0.98 in drought stress and non-stress condi-
tion respectively. 

Genetic diversity using SSR markers 

Assessment of the genetic variation and structure of  
diversity panels of lines represent important information 
for genetic analyses and identification of quantitative trait 
loci by means of association mapping50. A total of 1168 
SSR markers distributed across the rice genome were 
used to genotype the 17 rice accessions in this study. 
Among them, 505 were polymorphic and used for further 
study. These markers detected a total of 1514 alleles 
among the rice accessions. The allelic richness was 3.12, 
ranging from 1 to 12 among 17 rice accessions as com-
pared to the range 1 to 11 reported earlier in rice51. The 
number of alleles per marker ranged from 1 to 12 with an 
average of 3.12 (Table 3). PIC ranged from 0.0500 to 
1.000 with an average of 0.4000. Out of the 505 poly-
morphic markers, 157 (31%) markers were highly infor-
mative (PIC  0.5), 231 markers (46%) were reasonably 
informative (PIC = 0.25–0.5) and 117 markers (23%) 
were less informative (PIC  0.25). The PIC value of 0.40 
in this study is higher compared to earlier reports for 
rice51,52. The gene diversity ranged from 0.0571 to 1.0000 
with an average of 0.4549 (Table 3). The gene diversity 
was arrived at using PowerMarker37. Thus, the 17 acces-
sions used in this study have wide genetic diversity and 
are good candidates for GWAS of complex traits such as 
drought resistance in rice. 

Population structure discrimination using SSR  
markers  

Population structure is an important component in asso-
ciation mapping analyses because it can be a source of 
Type I error in an autogamous species such as rice53. A 
model-based approach STRUCTURE has been used fre-
quently in association mapping studies12,13. STRUCTURE 
analysis discriminated the 17 accessions into three sub-
populations, POP1, POP2 and POP3 (Figure 1). The sub-
population POP1 had nine accessions, while POP2 and 
POP3 had six and two accessions respectively. The ac-
cessions in each of the three subpopulations are clustered
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Table 2. Trait mean, range, standard deviation (SD) and broad sense heritability (H) for phenology and  
 plant production traits of rice lines under drought stress (WS) and non-stress (WW) conditions  

Trait  Season Mean Range SD H 
 

Days to 50% flowering WS  102 91–114    5 0.78 
 WW   87 54–122   15 0.92 
 

Plant height (cm) WS   56 27–71   10 0.81 
 WW   96 55–131   18 0.81 
 

Number of tillers WS    5 4–7    1 0.42 
 WW    9 2–14    3 0.75 
 

Number of productive tillers WS    4 2–6    1 0.82 
 WW    9 2–14    3 0.92 
 

Number of grains/panicle WS   59 36–87   14 0.71 
 WW   77 32–141   28 0.86 
 

Number of chaffs/panicle WS   11 7–18    3 0.91 
 WW   15 0–45   12 0.97 
 

Spikelet fertility (%) WS   83 63–92    6 0.89 
 WW   85 64–100   10 0.94 
 

Grain yield (kg/ha) WS  946 558–1667  277 0.93 
 WW 2874 44–6607 1801 0.98 
 

Straw yield (kg/ha) WS 2686 1383–4767  827 0.79 
 WW 6402 323–19532 2391 0.82 
 

Total biomass (kg/ha) WS 4245 2571–7009  827 0.76 
 WW 9263 1347–21777 6264 0.87 
 

Harvest index WS 0.27 0.08–0.58 0.12 0.82 
 WW 0.37 0.02–0.89 0.20 0.99 

 
 

Table 3. Number of alleles per locus, gene diversity, polymorphism information content (PIC), major  
 allele frequency (MAF) and heterozygosity of 17 rice accessions 

 Alleles Allele/locus Gene diversity PIC MAF Heterozygosity 
 

Total 1514 3.1216 0.4549 0.4000 0.6454 0.3020 
Minimum 1 1 0.0571 0.0500 0.1429 0.0588 
Maximum 12 12 1.0000 1.0000 1.0000 1.0000 

 
 
as follows: six indica accessions, two japonica and one 
aus type clustered in POP1; four japonica with two aus 
types in POP2, and one aus and japonica in POP3 (Table 
3). Thus, this three-group model (K = 3) was found to 
sufficiently explain the genetic structure among the 17 
accessions (Figure 1). In the SSR-dataset, pairwise related-
ness coefficients between individuals have been measured 
using SPAGeDi software43. STRUCTURE clustered the 
accessions into three clusters, and both the STRUCTURE 
and PowerMarker analyses reached similar conclusions 
regarding population structure among these accessions. 
The results support each other in this study, with some 
exception. In the SNP dataset, default kinship and 
PCA = 3 were used as implemented in GAPIT R package 
to apply compressed mixed linear model (CMLM)  
approach for GWAS45. 
 A neighbour-joining tree was also constructed based on 
Nei’s genetic distance (Figure 1). It revealed genetic rela-

tionships fairly consistent with the STRUCTURE-based 
membership assignment for most accessions. However, a 
few rice accessions were displayed as admixtures in differ-
ent clusters. For instance, cluster 1 with aus genotypes had 
Tainung 67, LTH and Moroberekan, cluster 2 with indica 
improved genotypes had Nipponbare and M202, and clus-
ter 3 with indica landraces had Azucena as admixtures. 

Linkage disequilibrium using SSR markers 

The significant associations between molecular polymor-
phism and particular phenotypes, as well as the resolving 
power of LD mapping techniques, depend on knowledge 
of the LD extent and the rate of decay of LD with physi-
cal distance12. In this study, LD of haplotypic interalleles 
among all loci distributed in 12 linkage groups for the  
accessions was estimated by avoiding Hardy–Weinberg 
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equilibrium (HWE) assumption using reconstructed  
haplotypic data as implemented in MIDAS software. A 
total of 19,008 allelic pairs of the most frequent alleles 
represented as N/Y and Y/Y were used for LD estimation 
and 356 allelic pairs were significant with Yates-
corrected 2 by the level of P  0.05 and showed r2  0.1. 
The minimum and maximum interallelic r2 value was 
0.10 and 0.81 respectively, with a mean of 0.26. D and r2 
are most commonly used measures of LD8,54, but r2 has 
more reliable sampling properties than D in cases with 
low allele frequencies, especially for self-pollinated spe-
cies such as rice55. In this study, interallelic LD was esti-
mated using MIDAS41. Based on the non-linear 
regression (NLR) curve, it is clear that LD in these rice 
accessions decays faster as in other studies (Figure 2). A 
set of rice accessions with diverse origins, LD as r2, 
which is also an indication of marker–trait correlations, is 
the most appropriate LD quantification measure for  
association mapping8. LD decay using SNP-set was  
 
 

 
 

Figure 1. Neighbour-joining tree of 17 rice accessions. 
 
 

 
 

Figure 2. Linkage disequilibrium (LD) decay plot of SSR allele pairs 
as a function of genetic distance (kb) for rice accessions. 

extensively discussed for this population by McNally et 
al.34, who observed a strong population structure of the 
OryzaSNP set in these genotypes. Extent of LD varies 
among different genomic regions56, rice accessions stud-
ied57 and markers used. 

Association mapping by MLM using SSR markers 

Association analysis was done using 505 polymorphic 
SSR markers. Q + K model was used with MLM  
approach to obtain the marker–trait association. Based on 
MLM analysis, a total of 130 and 165 marker–trait asso-
ciations were obtained for stress and non-stress condi-
tions respectively, for 12 traits (data not shown). 
Association studies using SSR markers showed the sig-
nificant marker–trait association of plant phenology and 
production traits in TPE. 

GWAS using SNPs 

A total of 12 traits with two environment combinations 
were analysed and population structure was controlled 
with default principle component analysis (PCA) matrix 
in GAPIT R package. A total of 911,153 SNPs were used 
for SNP–trait association analyses. The number of ge-
nome-wide significant SNP associations detected on 
chromosome 1 to 12 was 16, 8, 8, 7, 12, 5, 14, 10, 9, 5, 9, 
15 and 8, 12, 10, 8, 1, 10, 6, 9, 10, 8, 15, 13 for stress and 
non-stress conditions respectively. 

Comparison of association mapping using SSR  
versus SNP 

The analysis revealed that 117 and 110 SNP–trait asso-
ciations, and 130 and 165 SSR–trait associations were  
recorded respectively, under stress and non-stress condi-
tions. There are 23 SNPs–trait associations for different 
traits and these genomic regions are close to the 19 SSR 
marker–traits which are associated for different traits un-
der stress condition (Table 4). 

SNP and SSR marker-trait association 

The marker–trait associations detected using SNP were 
compared with those identified using SSR with their 
physical positions, and the regions detected in both SSR 
and SNP marker analysis were deduced. A total of 23 
marker–trait associations were common across markers 
and these markers were previously reported by several 
workers using traditional QTL mapping studies for vari-
ous traits. For example, on chromosome 4 the markers 
TBGU205562-RM3866 were associated with grain yield 
and total biomass in SNP and SSR analysis respectively. 
This region was reported earlier for a number of grains58 
and leaf chlorophyll content (SPAD)59, drought responsive
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Table 4. Comparative association between SSR and SNP markers for phenology and plant production traits under drought stress in rice diverse lines 

Chr SNP Position Traits SSR Position Traits 
 

Chr2 TBG111995 29580273 Spikelet fertility (%) RM6933 29331976 No. of chaffs/panicle, grain yield (kg/ha) 
Chr3 TBG171695 34232085 Plant height (cm) RM7000 33589253 Days to 50% flowering 
Chr4 TBGU205562 23912824 Grain yield (kg/ha) RM3866 23333714 Total biomass (kg/ha), straw yield (kg/ha) 
 TBG211863 28956555 No. of grains/panicle RM470 28248941 Spikelet fertility (%) 
 TBGU211863 28956555 No. of grains/panicle RM470, RM317 28248941 Spikelet fertility (%) 
 
Chr5 TBGU232483 5597188 Grain yield (kg/ha) RM5997 6798666 Straw yield (kg/ha) 
 TBGU232325 5476814 Spikelet fertility (%) RM4915 3991545 No. of grains/panicle, no. of chaffs/panicle 
 
Chr6 TBGU283441 9598156 No. of tillers RM527 9874150 Grain yield (kg/ha) 
 TBGU297986 22163663 No. of tillers RM6298 23353565 Straw yield (kg/ha) 
 TBG275192 4736178 Straw yield (kg/ha) RM6176, RM8258 4623191 Straw yield (kg/ha) 
 
Chr7 TBGU325164 18865445 Days to 50% flowering RM5583 19307928 Spikelet fertility (%) 
 TBG334303 27456467 No. of chaffs/panicle RM5720 28616499 No. of chaffs/panicle, no. productive tillers 
 TBGU334303 27456467 No. of chaffs/panicle RM5720 28616499 No. of chaffs/panicle, no. productive tillers 
 TBG325285 19020761 Plant height (cm) RM5420 19304494 Single plant yield (g) 
 TBGU325285 19020761 Plant height (cm) RM5420 19304494 Single plant yield (g) 
 
Chr8 TBG363179 26622302 Days to 50% flowering RM6075 27764004 No. of productive tillers, no. of chaffs/panicle 
 TBG356974 20279623 Spikelet fertility (%) RM342 19953040 Grain yield (kg/ha), plant height (cm) 
 TBG356980 20279808 Spikelet fertility (%) RM342 19953040 Grain yield (kg/ha), plant height (cm) 
 TBGI356980 20279808 Spikelet fertility (%) RM342 19953040 Grain yield (kg/ha), plant height (cm) 
 
Chr10 TBGU414867 21938337 No. of grains/panicle RM5352 20672962 No. of chaffs/panicle, no. of productive tillers, 
Chr11 TBG432787 17273065 Days to 50% flowering RM6272 16400644 Total biomass (kg/ha), no. of grains/panicle 
 TBGU424331 6090858 Grain yield (kg/ha) RM3625 6591206 Days to 50% flowering 
 
Chr12 TBGU464298 6691638 No. of productive tillers RM7119 6694741 Spikelet fertility (%) 

Chr, Chromosome. 
 
 
AAP7 gene and dwarf11 gene. The region on chromo-
some4_TBG211863_RM470 was associated with number 
of grains and spikelet fertility in SNP and SSR trait  
associations respectively, and DRO2 QTL60 was  
located in this region. Chromosome5_TBGU232483_ 
RM5997 was found to be associated for grain yield in 
SNP analysis, and straw yield, number of grains and 
number of chaffs in SSR analysis. The database qtaro. 
abr.affrc.go.jp/ also reported this region for grain yield, 
and transposon protein was found in this region.  
On chromosome 6, the SNP TBG275192 linked to straw 
yield was located in the same region as RM6176 and 
RM8258 linked to spikelet fertility. Importantly, Chro-
mosome8_TBG363179_RM6075 was associated for days 
to 50% flowering in SNP–trait association and number of 
productive tillers and number of chaffs for SSR–trait  
association; the same region comprises DREB1G and 
heat shock factor class B2b genes. On chromosome10, 
TBGU414867 was linked to number of grains, and SSR 
RM5352 was liked with number of chaffs and number  
of productive tillers. This region was earlier reported  
for osmotic adjustment (OA)61. Chromosome11_ 
TBG432787_RM6272 was associated with days to flow-
ering in SNP–trait association and total biomass and 
number of chaffs in SSR–trait association. Moncada et 
al.62 reported this region for the number of grains, grain 
weight and grain yield; the region contains RALFL33 

gene. Chromosome11_TBGU424331_RM3625 was 
linked to grain yield with SNP–trait association, and days 
to 50% flowering with SSR–trait association, this region 
was reported for yield per plant by Moncada et al.62. In 
SNP–marker trait association, 5 out of 23 associations 
were observed as polymorphic genic regions; the 
SNP_TBG111995 associated with spikelet fertility on 
chromosome 2 harbors the ATPase gene; the SNPs 
TBG356974 and TBGI356980 on chromosome 8 associ-
ated with spikelet fertility have MAP kinase gene; the 
SNP_TBGU414867 on chromosome 10 linked with num-
ber of grains has cytoplasmic peptidoglycan synthase 
gene and the SNP_TBG432787 on chromosome 11 asso-
ciated with days to 50% flowering harbors rapid alkalini-
zation factor gene. These genes, viz. ATPase63, MAP 
kinase64 and rapid alkalinization factor65 were classified 
as drought responsive genes. 
 To sum up, 23 marker–trait associations were found 
consistent across SSR and SNP marker analysis. These 
regions were also earlier reported to be linked to drought 
resistance traits in rice using conventional QTL mapping 
studies. For instance, comparative GWAS analysis with 
SNP and SSR markers showed associations for grain 
yield and yield component traits under drought in TPE 
with SNP and SSR markers on chromosomes 4, 5, 6 and 
11 within 2.27, 4.7, 0.44 and 3.7 cM regions respectively. 
The marker–trait association on chromosome 6 with SNP 
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and SSR marker RM6176 was 1.29 cM close to RM2434-
RM6773, which was fine mapped in IR62266/Norungan 
RI lines for grain yield under drought stress in the same 
laboratory (unpublished). These regions are reported for 
OsDREB1c gene, and root dry weight by conventional 
QTL mapping studies, which confirms that these marker–
trait associated regions are useful candidates for develop-
ing resilient rice cultivars suitable for water-limited envi-
ronments using marker-assisted breeding strategies. 
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