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In this study, ab initio atmospheric profiles generated 
through high-resolution calculations from the com-
munity weather model WRF, suitably matched up 
with both TRMM Microwave Imager (TMI) and Pre-
cipitation Radar (PR) instruments of the TRMM  
satellite were used to compute simulated brightness 
temperatures (BTs) corresponding to SAPHIR fre-
quencies, through an in-house polarized radiative 
transfer code. An artificial neural network was then 
constructed and trained to return the near-surface 
rain (NSR) rate given the six BTs corresponding to 
SAPHIR. For accomplishing the retrievals, measured 
BTs of SAPHIR (level 1 data) were used. NSR rates 
were calculated for two precipitating systems, namely 
(i) cyclone Neelam and (ii) cyclone Phailin. Rain rates 
thus estimated were then validated with the TMI–PR 
combined rain product of TRMM (2A12). The results 
showed that there is good agreement between the two. 
An inter-comparison between rain rates derived from 
MADRAS and SAPHIR was also done. This unexpec-
ted ability of the SAPHIR radiances provide us with 
the rainfall signature opens up new vistas in achieving 
the mission objectives of Megha-Tropiques. 
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MODERN satellite remote sensing techniques are capable 
of providing a substantial amount of information about 
the atmosphere vertical structure and surface properties. 
The hallmark in satellite meteorology is the ability to  
estimate geophysical parameters over the open ocean, 
which is invariably impossible with conventional tech-
niques. During the last few decades, availability of high 
temporal and spatial resolution satellite data together with 
the associated physics-based models has helped improve 
our understanding of weather systems and climate vari-
ability of the Earth system. In general, retrieval tech-
niques are inverse problems, wherein satellite measured 
brightness temperatures (BTs) are inverted to estimate 
geophysical parameters. Such retrievals are always ill-
posed as one invariably wants to estimate a large number 
of parameters from limited satellite radiance measure-
ments. For the development of a physics-based retrieval 

scheme, a radiative transfer model that is capable of 
simulating BTs for an emitting, absorbing and scattering 
atmosphere is inevitable. A microwave retrieval algorithm 
can be either emission or scattering type. The former is 
usually developed for low frequency, whereas the latter is 
used for high frequency channels. To combine the effect 
of scattering (due to ice) and emission (due to rain drops), 
a new class of profiling algorithms was developed1–3. 
These algorithms minimize the error between the simu-
lated and measured quantities, typically satellite radi-
ances or BTs by an iterative procedure, making the whole 
process computationally expensive. This spurred the de-
velopment of fast retrieval techniques. Kummerow et al.4 
developed a simple profiling algorithm based on Bayes-
ian approach for inverting BT to hydrometeor profiles 
and thereby avoided explicit radiative transfer calcula-
tions. Gerard and Eymard5 retrieved the liquid water path 
(LWP) and the total precipitable water (TPW) by creating 
a database of profiles and their respective BTs. A multi-
variate regression was used to correlate LWP and TPW 
with the upwelling radiances. Owing to the high dimen-
sionality and computational cost associated with the re-
trieval problem, artificial neural networks (ANNs) could 
be used as a surrogate for inversion. A substantial amount 
of literature on the use of ANNs for retrieval problems is 
available. One such is the work of Hsu et al.6 who repor-
ted the use of ANN for rainfall estimation from remotely 
sensed data. Their approach was based on modified 
counter propagation neural networks (MCPNs). Studies 
on short-term precipitation using ANN were done by  
Kuligowski and Barros7. Facilitating the retrieval of vertical 
temperature and dew point profiles in a cloudy atmo-
sphere, Kuligowski and Barros8 used both IR and micro-
wave radiometers with ANN. Kumar et al.9 demonstrated 
the use of multi-layer feed-forward ANN for rainfall re-
trieval from TRMM Microwave Imager (TMI) radiomet-
ric observations over different land and oceanic regions. 
Ramanujam and Balaji10 developed an algorithm for the 
retrieval of the vertical structure of cloud and rainfall 
from Microwave Analysis and Detection of Rain and At-
mospheric Systems (MADRAS) imager. They used 
hydrometeor profiles from the WRF–ARW community 
model collocated with the TRMM–TMI and Precipitation 
Radar (PR) pixels to develop an a priori database. This 
was followed by the development of a Bayesian approach 
for the retrievals. In the present study, an attempt has 
been made to use ANN directly for the retrieval of rain 
rates from radiances of the microwave sounder Sondeur 
Atmosphrique du Profil d’Humidit Intertropicale par  
Radiomtrie (SAPHIR). It needs to be emphasized that 
SAPHIR is designed primarily to obtain humidity profiles 
in the atmosphere. If SAPHIR can pick up the rain signa-
ture with reasonable accuracies, it will benefit the Megha-
Tropiques mission in which the primary rain-measuring 
microwave imager MADRAS has been facing difficulties, 
due to which MADRAS data are currently not available. 
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Figure 1. Channel-wise measured brightness temperature from SAPHIR for cyclone Phailin. 
 
 
 Megha-Tropiques is an Indo-French joint satellite mis-
sion launched on 12 October 2011. The main objectives 
of this mission are to study the effect of water cycle on 
tropical weather and their influence on the energy as well 
as moisture budget. In line with its mission, it carries 
three payloads, viz. MADRAS, SAPHIR and SCARAB 
(Scanner for Radiation Budget). MADRAS is a conical 
scanning microwave imaging instrument which scans the 
atmosphere at five different frequencies. The presence of 
low and high frequency channels facilitates sensitivity to 

a wide range of precipitation phenomena. SCARAB is an 
optical scanning instrument which measures radiative 
fluxes at the top of atmosphere (TOA). It consists of four 
independent telescopes which measure the reflected solar 
and emitted thermal radiation from the Earth’s atmos-
phere. SAPHIR is a multi-channel humidity sounder with 
cross-track scanning with an incident angle up to 50. It 
has a resolution of 10 km at nadir. The SAPHIR instru-
ment has six channels centred around 183.31 GHz, which 
is a water vapour absorption line. Details of these six 
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channels are given in Table 1. The range of the radio-
meter present in SAPHIR varies from 4 to 313 K. In 
every scan line, it collects a fixed number of 182 samples. 
(For a full discussion on instruments aboard the Megha-
Tropiques, refer to Srinivasan and Narayanan11.) 
 A forward model is needed to calculate the radiant en-
ergy emerging from TOA, which has a direct functional 
dependence on the geophysical and hydrometeor profile. 
The conspicuous presence of ice particles demands a  
polarized model for radiative transfer through clouds. The 
first step in radiative transfer simulations is to generate 
interaction parameters for the atmosphere as well as for 
the ocean surface. In this study, a modified gamma distri-
bution is used for the drop size of suspended particles. 
Following Evans and Stephens12, the radiative transfer 
equation is solved using the 
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where ,  are angles in the spherical coordinate system, 
  denotes the single scattering albedo and  denotes the 
optical depth. Radiant intensity I is denoted by the Stokes 
vector (I, Q,U, V). B is the Planck’s distribution function 
for a black body. Equation (1) implies that radiant inten-
sity I emanating from TOA results from emission,  
absorption and scattering due to the hydrometeors present 
in the atmosphere. The Lorentz–Mie theory is used for  
single scattering computations. The radiative transfer 
equation is solved using adding and doubling method. 
Deiveegan et al.13 elaborate the generation of interaction 
parameters and the solution of polarized radiative transfer 
through the atmosphere. 
 The satellite-measured radiances from SAPHIR are 
available in the form of segmented level-1 data from 
ICARE Data and Services Center, France (http://www. 
icare.univlille1.fr). The channel-wise BT values have 
been obtained from the level-1 data for the SAPHIR 
overpass over the Bay of Bengal (BOB) region for the 
cyclonic storms Neelam and Phailin. 
 Cyclone Neelam, formed as depression on 28 October 
2012. Later, it strengthened as a cyclonic storm with a 
maximum sustainable wind speed of 70–80 knots. It 
made landfall near Chennai between 16 :  00 and 17  : 00 
IST on 31 October 2012. The maximum rainfall recorded 
during this cyclone was 7 cm. Phailin, a recent cyclone, 
had its cyclogenesis on 9 October 2013. This was re-
corded as a category 5 cyclone with a maximum wind 
speed of about 140 knots. Phailin made its landfall near 

Gopalpur in Odisha between 20  : 30 and 21 : 30 IST on 12 
October 2013. 
 A cyclonic system is an excellent test bed to critically 
evaluate the performance of a retrieval algorithm as sev-
eral types of clouds and rain structures are present in the 
system. Figure 1 shows channel-wise BT measurement 
for one such overpass for the cyclone Phailin. From Fig-
ure 1, it can be seen that the SAPHIR BTs reproduce the 
general features of the cyclone well, with channels 5 and 
6 showing remarkable resolution. Figure 1 indicates that 
retrieval of near surface rain (NSR) rate is eminently pos-
sible from the SAPHIR BTs. 
 
 

Table 1. SAPHIR frequencies and polarization 

 Central frequency  
Channel (frequency used for simulation14) Polarization 
 

S1 183.31  0.20 GHz (183.11 GHz) H 
S2 183.31  1.10 GHz (182.11 GHz) H 
S3 183.31  2.80 GHz (180.51 GHz) H 
S4 183.31  4.20 GHz (179.11 GHz) H 
S5 183.31  6.80 GHz (176.51 GHz) H 
S6 183.31  11.0 GHz (172.31 GHz) H 

 
 
Table 2. Specifications of the WRF–ARW numerical weather prediction  
 model used in the present study 

Equation type Non-hydrostatic 
 

Time integration scheme Third-order RK3 
Integration time-step 15 s 
Grid type Arakawa-C grid 
Projection type Mercator 

 
 

 
 

Figure 2. a, Architecture of the neural network employed in the pre-
sent study. b, Flow chart detailing the retrieval methodology. 
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Figure 3. Near-surface rain rate contours retrieved from SAPHIR during cyclones: Neelam (a) and Phailin (b). 
 
 

 
 

Figure 4. Variation of SAPHIR brightness temperature with the re-
trieved rain rate. 
 
 

Table 3. Results of the neuron independence study 

Number of neurons R2 for one hidden layer R2 for two hidden layers 
 

5 0.835 0.887 
10 0.929 0.922 
15 0.921 0.921 
20 0.854 0.866 
25 0.906 0.919 
30 0.835 0.961 
35 0.887 0.884 

 
 
 In the present study an ANN-based retrieval scheme 
has been attempted, as the number of outputs is only 1 
(NSR) with 6 inputs corresponding to SAPHIR BTs, at 
frequencies corresponding to those indicated in Table 1. 
It is well established that an ANN performs exceedingly 
well when the architecture represents a ‘compression’ 

type of situation, wherein several inputs characterize a 
much lesser number of outputs. To retrieve the rain rate 
from SAPHIR channels, a database covering a wide spec-
trum of rain events has to be developed. 
 As mentioned earlier, the database required for training 
the ANN must accommodate the whole range of rain phe-
nomenon, viz. low to high rain. During the period 2003–
2010, 14 cyclones originated in the north Indian Ocean 
region. With the initial and boundary conditions from  
final analysis data (FNL), Advanced Research WRF 
(ARW), a community-based numerical weather predic-
tion model (http://www.wrf-model.org/index.php) was 
used to generate vertical profiles of the geophysical quan-
tities like temperature, humidity and hydrometeor profiles 
for all the 14 events. The ARW model solves the flux 
form of Euler equations numerically using a third order 
Runge–Kutta scheme. The ARW solver defines the prog-
nostic variables in the form  = (U, V, W, ,  ,  , Qm) 
and the model equation as t = R(), where U, V and W 
denote the coupled components of velocity along x, y and 
z directions respectively.  denotes the coupled potential 
temperature,   denotes perturbed geo-potential, whereas 
  denotes perturbed pressure. Qm is the generic coupled 
moisture variable. 
 As mentioned earlier, initial and boundary conditions 
were taken from FNL data at the same times as those of 
the SAPHIR overpasses. The model was allowed to stabi-
lize for 3 h (spin-up) before the overpass. A resolution of 
5 km  5 km was chosen for the WRF domain. Table 2 
shows some of the specifications of WRF used in this 
study. The resulting profiles from the WRF model in 
general are prone to errors, e.g. error in the initial and 
boundary conditions, round-off error, limitations in the 
physics parameterization schemes and so on. To over-
come this, an elaborate match-up exercise was carried out 
to ensure that the profiles are qualitatively fit. The WRF 
profiles are matched up with two rain-measuring 
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Figure 5. Comparison of retrieved NSR rates from SAPHIR and TMI-derived NSR rates for cyclones Neelam  
and Phailin. a and c, Retrieved rain rates from SAPHIR; b and d, TMI-derived NSR rates. 

 
 

 
 

Figure  6. Parity plot showing agreement of SAPHIR-retrieved NSR 
rates with TMI-derived rain rates. 

instruments available in TRMM, namely TMI and PR. At 
the end of the exercise, a database of 400 high-quality 
raining vertical atmospheric profiles in the north Indian 
Ocean was obtained. A complete discussion on this 
match-up procedure can be found in ref. 10. 
 In order to train the ANN, BTs were simulated for the 
matched-up high-quality raining vertical atmospheric pro-
files, about 400 in number, using the polarized radiative 
transfer equation (PRTE). Simulated BTs were used pri-
marily to expose the ANN to diverse situations so that the 
entire spectrum of rainfall events starting from low to 
high rainfall rate is covered. Furthermore, the two-way 
collocation between the WRF and SAPHIR, and the lim-
ited amount of data available from SAPHIR as it has been 
functioning only from October 2011, necessitate a differ-
ent strategy for training the neural network. 
 Considering this, in order to populate the ANN with 
diverse profiles, simulated BTs corresponding to the 
high-quality database previously generated were used. 
The inputs for the ANN are the six-channel BT and the 
output was surface rain rate. Figure 2  a shows the neuron 
architecture used for the present study. The neuron 
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Figure 7. Comparison of retrieved NSR rate from SAPHIR and MADRAS-derived NSR rate for 9 December 2011. 
 
 
architecture for real-time testing was selected based on 
the root mean square (RMS) and mean relative error 
(MRE) errors. Figure 2  b gives an overview of the  
retrieval methodology. Table 3 shows the results of  
the neuron independence study conducted by changing 
the number of neurons and also the number of hidden 
layers. From the table, it is clear that a neural network ar-
chitecture with 6 inputs, 1 output, 2 hidden layers and 30 
neurons in the first hidden layer and 30 neurons in the 
second layer is adequate. 
 For the purposes of validation, first the identification 
of common pixels between two satellite swaths of TRMM 
and SAPHIR is required. To achieve this, a collocation 
based on minimum distance strategy was adapted. The 
distance between a TRMM and SAPHIR pixel is given as 
 

 2 2
TRMM SAP TRMM SAP(lat lat ) (lon lon ) ,jd      (2) 

 
where j refers to the jth SAPHIR pixel. The minimum cri-
terion for d was chosen to be ~ 1 km. 
 To check the capability of the developed ANN-based 
retrieval, experiments were performed for two cyclones, 
namely Neelam and Phailin as already mentioned. During 
these cyclone events Megha-Tropiques and the TRMM 
satellites made sufficient number of overpasses. With the 
ANN trained using the database as mentioned earlier, 
measured values of BT corresponding to the six channels 
of SAPHIR were given as input and the output was the 
NSR rate. The SAPHIR pixels were then collocated with 
the TRMM pixels using the above-mentioned technique. 
Figure 3 shows snapshots of rain contours of the retrieved 
NSR rates for the cyclones Neelam and Phailin. It can be 
seen that the isohyets of both the cyclones are able to 
capture the general features of the cyclones quite well; 
for the cyclone Phailin, the eye is captured very well. 
Figure 4 shows the variation of six channel BTs with the 
retrieved NSR rate for cyclone Phailin. It can be seen that 

the response of channels 3–6 to rainfall is good. This en-
sures that SAPHIR can pick up rainfall signature. 
 To validate the present retrieval methodology, TRMM-
derived rain rates have been considered at the same time 
as the SAPHIR overpasses. After successful collocation 
based on the procedure described above, pixel-wise rain 
rates were compared. For the raining cases considered, 
Figure 5 shows a comparison of the NSR rates obtained 
from SAPHIR radiances and TRMM-derived (2A12) 
counterparts. Due to the difference in overpass time  
between SAPHIR and TRMM, only a few snapshots were 
available for comparison. Even so, the broad agreement 
between the two rain rates, more clearly seen for Phailin 
establishes the possibility of exploiting SAPHIR radiances 
to estimate NSR rates reasonably well. 
 Figure 6 shows a parity plot between retrieved NSR 
and TRMM-derived NSR rates for cyclone Phailin. From 
the figure, it is seen that a correlation coefficient (R) of 
0.65 has been achieved from ANN-based retrieval. As 
can be seen from the parity plot, for values of rain rates 
between 30 and 40 mm/h, a maximum error of under 
10 mm/h was recorded. This again is an encouraging  
result, because even though the correlation coefficient is 
moderate at 0.65, the ability of SAPHIR to pick up mod-
erate to high rain signature is quite impressive. Further-
more, as SAPHIR data continue to be available, retrieval 
algorithms can be improved and fine-tuned and the corre-
lation coefficient can be further increased. If eventually 
this happens, SAPHIR itself can be used as a proxy for 
rain. 
 A qualitative comparison between retrieved rain rates 
from SAPHIR with MADRAS-derived rain rates (level 2) 
has been made. The rain rates derived from MADRAS 
radiances on 9 December 2011 are available from an ftp 
website (http://14.139.159.206/mtdata/). Figure 7 shows 
the rain rates derived from MADRAS and SAPHIR and 
this indicates that SAPHIR can pick up moderate to high 
rain signature. Figure 8 shows a parity plot between 
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Figure  8. Parity plot showing agreement of SAPHIR-retrieved NSR 
rates with MADRAS-derived rain rates. 
 
 
MADRAS and retrieved SAPHIR rain rates. A correla-
tion coefficient (R) of about 0.67 has been observed  
between the two. The agreement between the two is  
encouraging. 
 The present study has explored the possibility of re-
trieving NSR rates from microwave radiances of the 
SAPHIR instrument aboard the Megha-Tropiques satel-
lite. The upwelling radiances for SAPHIR frequency were 
simulated by an in-house polarized radiative transfer 
code, with hydrometeor profiles from WRF–ARW suita-
bly matched up with TMI and PR instruments with an 
elaborate procedure involving a large number of rain 
events. An ANN was trained to regress NSR rates  
directly from the measured BTs at six frequencies corre-
sponding to SAPHIR, namely 183.31  0.20, 183.31  
1.10, 183.31  2.80, 183.31  4.20, 183.31  6.80 and 
183.31  11.0 GHz. To populate the database adequately 
and extensively, simulated BTs were used in the training. 
However, for retrievals satellite-measured BTs (level-1 
products) were used. Retrievals were performed for two 
cyclones, Neelam and Phailin with SAPHIR. Even 
though the SAPHIR channels are centred around the  
water vapour absorption line, the retrieved rain rates are 
in good agreement with the TRMM-derived rain rates. A 
correlation coefficient of 0.65 has been achieved by the 
current retrieval scheme. It is seen that moderate to high 
rainfall is retrieved very well with a maximum error 
around 25%. This unexpected performance of retrievals 
with SAPHIR radiances will benefit the Megha-Tropiques 
mission, due to the non-availability of MADRAS imager 
data. Furthermore, an inter-comparison of MADRAS and 
SAPHIR rain rates on 9 December 2011 shows good 
agreement between the two with a correlation coefficient 

of 0.67. From these findings it is clear that SAPHIR has 
opened up new vistas for rainfall retrieval. Targetted  
improvement of algorithms for ground rain rate retrieval  
with SAPHIR radiances can go a long way in accomplish-
ing the objectives of the Megha-Tropiques mission.  
Efforts in this direction are currently underway. The next 
logical step would be to directly assimilate the radiances 
(level 1) in a numerical weather model to improve fore-
cast skill of cyclones and other precipitating systems in 
the north Indian Ocean. 
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