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On the basis of geochemical studies, pegmatites  
emplaced in the Rajgarh Group of Delhi Supergroup 
in the South Delhi Fold Belt have been classified into 
three groups. They show a variety of rare earth element 
enrichment patterns, LREE/HREE values and Eu 
anomalies. The geochemical affinities of these pegma-
tites suggest their calc-alkaline nature, volcanic arc 
granite signature in tectonic discrimination diagrams 
(Nb vs Y and Rb vs Nb + Y) and a probable S-type 
parentage as inferred from their high A/CNK value, 

peraluminous character, presence of high normative 
corundum and abundance of garnet and muscovite. 
These features have been related to subduction-
related processes which might have generated the  
parent granitic melt forming these pegmatites. 
 
Keywords: Geochemical studies, granitic melt, pegma-
tites, subduction. 
 
THAT pegmatites result from magmatic differentiation of 
granitic systems1–7 is almost unanimously agreed upon by 
geologists and therefore referred to as ‘granitic pegma-
tites’, although pegmatitic textures can result in igneous 
rocks of all compositions8. Pegmatites are representative 
of late-stage residual fraction of silicic melt that accumu-
late in the granitic parent magma itself or intrude the sur-
rounding rocks9. However, it is not always mandatory for 
the pegmatites to be in close spatial association with the 
parent granite6,10. The volatile-rich, residual, pegmatitic 
melt seems to favour stability at lower temperatures at 
large distances from the parent plutonic source6,11. The 
enrichment of rare elements (Be, Ta, Li, Sn, Bi, W, Mo, 
Cu) and volatiles in the late residual magma6,12 renders 
the granite, pegmatites and hydrothermal veins subse-
quently formed substantially mineralized, economically 
viable and sought after. However, it is to be borne in mind 
that these rare element enriched-granitic pegmatites con-
stitute about less than 1% by volume of the pegmatite  
terrain they are a part of13 and that not all pegmatite bodies 
can be exploited for their mineral content. One of the 
most rudimentary principles underlying geochemistry  
is the enrichment of the compatible and incompatible 
elements in the fractionating minerals and residual melt 
respectively. These preferential behaviours and conse-
quent chemical signatures have formed the basis of  
characterization and differentiation of one rock from the 
other and even give an account of their possible evolution 
and parentage. The accentuated trace element signatures 
that pegmatite inherit from their granitic sources can be 
used to fingerprint their origin13. 
 The NE–SW trending Aravalli–Delhi orogen which 
runs across Rajasthan separates the Marwar and Mewar 
cratons and comprises of the Aravalli Fold Belt and the 
Delhi Fold Belt14. The South (SDFB) and North Delhi Fold 
Belts form the principal divisions of the Proterozoic 
Delhi Fold Belt15–17 and expose rocks of the Delhi Super-
group14. The SDFB comprises of the western Sendra  
basin (consisting of the Barotiya and Sendra Group of 
rocks) and the eastern Bhim basin (consisting of the  
Rajgarh and Bhim Group of rocks)18 which are separated 
by an inlier of pre-Delhi rocks14,19. Several hypotheses  
regarding the evolution of the Delhi Fold Belt have been 
put forward by previous workers. Heron20 proposed that 
sedimentation took place in intracontinental fault-bound 
grabens. However, the more popular diachronous deve-
lopment model was proposed by Sinha-Roy15,16, wherein 
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Figure 1. a, Geological map of the Delhi Fold Belt (adapted from Pandit et al.31 and references therein).  
b, Generalized geological map of the South Delhi Fold Belt showing the study area (adapted from Mukhopadhyay 
and Bhattacharyya32). 

 
 
the Delhi rift system was divided into the North Delhi 
Rift (NDR) and South Delhi Rift (SDR) by an intraconti-
nental strike–slip fault (Sambhar–Jaipur–Dausa Fault). 
The failure of NDR and opening of the SDR into an oce-
anic basin resulted in the westwards subduction of the 
Delhi oceanic crust and consequent island arc formation 
in the west which manifested as the Sendra Group of  
the western basin of SDFB. The island arc nature  
of the rocks of the western part of SDFB have also been 
confirmed by Sugden and Windley21, and Deb and 
Sarkar22. 
 The present study is confined to SDFB and involves ini-
tial geochemical investigations of 14 pegmatite samples 
from Rajgarh, Ajmer district, Rajasthan (Figure 1). The 
studied pegmatites intrude garnetiferous mica schist and 

schistose ultrabasic rocks (Figure 2) of the Delhi  
Supergroup of rocks23 belonging to the Rajgarh Group 
exposed in the eastern Bhim basin of SDFB. The pegma-
tites are coarse grained, inequigranular and show typical 
pegmatitic texture. The commonly lensoidal pegmatite 
veins are composed predominantly of quartz and subordi-
nate amounts of perthiticmicrocline, plagioclase and 
muscovite23. This study aims at geochemically chara-
cterizing the pegmatites and makes an attempt to infer 
their genesis. 
 These pegmatic bodies are mostly unzoned. Petro-
graphic studies reveal that these pegmatites consist prin-
cipally of quartz, K-feldspar and plagioclase. Garnet, 
muscovite, tourmaline crystals and subordinate biotite 
and zircon are commonly present in them. Unzoned 
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nature of the pegmatites rendered sample collection 
somewhat easy. Representative fresh samples were col-
lected and major element analyses were carried out using 
X-ray fluorescence spectrometry (Phillips MAGIX PRO 
model 2440) within 3% relative standard deviation24. 
Trace elements were also determined at the National 
Geophysical Research Institute, Hyderabad using induc-
tively coupled plasma mass spectrometer (Perkin Elmer 
ELAN DRC II) and precision better than 5% for majority 
of trace elements and up to 10% for few HREE was 
achieved25. The geochemical data of the Rajgarh pegma-
tites are enlisted in Table 1. 
 The pegmatites from Rajgarh area are calc-alkaline with 
silica ranging from 66.9% to 75.88% (average 72.48%). 
Alumina being the second most abundant oxide ranges 
from 14.8% to 22.06% (average 17.53%). A highly peralu-
minous character is exhibited by the high A/CNK value 
(average 1.70), which is consistently greater than that for 
all samples and normative corundum ranges from 3.46% 
to 15.50%. The pegmatites show REE content ranging 
from 1.82 to 90.32 ppm. Based on distinct patterns shown 
in chondrite normalized REE diagrams, we grouped these 
pegmatite samples into three groups (Figure 3). All the  
 
 

 
 

Figure 2  a, b. Pegmatite intruding host rocks of Delhi Supergroup. 

groups are characterized by LREE enrichments and vari-
able degrees of HREE depletion. Group 1 with the highest 
REE content (avg 51.25 ppm), yields the most pro-
nounced negative Eu-anomaly (Eu/Eu* = 0.18) and weak 
depletion of the HREE (LaN/YbN = 5.12). Group 2 has the 
lowest REE content (avg. 2.02 ppm) and shows slight to 
no negative Eu anomaly (Eu/Eu* = 0.71) and highest 
HREE depletion (LaN/YbN = 8.64). Group 3 has REE  
 
 

 
 

Figure 3. Chondrite normalized REE patterns for Rajgarh pegmatites. 
Chondrite elemental values taken from Sun and McDonough33. 

 
 

 
 

Figure 4. Primitive mantle normalized multi element diagrams for 
Rajgarh pegmatites. Primitive mantle elemental values taken from Sun 
and McDonough33. 
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Figure 5. Nb versus Y (a) and Rb versus (Nb + Y) (b) tectonic discrimination diagrams of Pearce et al.34. VAG, Volcanic arc granites; 
Syn, COLG, Collisional granites; WPG, Within plate granites; ORG, Ocean ridge granites. The x-axis has been modified to accommodate 
low values of Y in the samples. 

 
 
content (avg 9.42 ppm) intermediate between groups 1 
and 2 and exhibits relatively flatter REE patterns with 
moderate negative to positive Eu anomaly and HREE de-
pletion (LaN/YbN = 5.81). 
 Peraluminous nature, high normative corundum 
(> 1%), and abundant garnet and muscovite content may 
indicate S-type granitic parentage26,27 and consequent 
categorization of these pegmatites into LCT (enriched in 
lithium, caesium and tantalum) subtype1,13,28. The low to 
moderate LREE/HREE value can be attributed to the 
crystallization of garnet which incorporates HREE into 
its crystal structure, thereby impeding HREE depletion. 
This is corroborated by the presence of abundant garnet 
crystals in the pegmatitic bodies. According to Hanson29, 
the fractionation of garnet leads to depletion of HREE 
and a positive Eu anomaly in the melt. The relatively 
high HREE depletion and absence of conspicuous nega-
tive Eu anomaly exhibited by group 2 could point  
towards their crystallization from a late-stage melt in 
which the major portion of garnet crystals had already 
fractionated out. The low concentrations of Zr (44 ppm; 
< 0.1%) possibly would not affect the HREE pattern dur-
ing zircon crystallization29 as opposed to the role played 
by garnet fractionation. The primitive mantle normalized  
multi-element diagrams for each of the groups are shown 
in Figure 4. The alkali metals (viz. Cs, Rb, K which also 
happen to be more mobile LIL elements) show enrich-
ment, whereas the alkaline earth metals (Sr, Ba which are 
also LIL elements) show depletion indicating a highly 
differentiated parent pluton30. The high concentrations of 
K and Rb could also be due to the abundance of musco-
vite and K-feldspar as Rb substitutes for K in these min-

erals. Fractionation of plagioclase and Ti-oxide manifests 
as Sr and Ti depletion respectively, because these mineral 
phases have high KDS for these elements. However, group 
2 pegmatites shows slight positive Sr anomaly, which 
along with the absence of conspicuous Eu anomaly can 
be correlated with localized plagioclase accumulation. It 
is interesting to note that the less mobile HFS elements 
(U, Th, Zr, Pb) also show enrichment which is the typical 
crustal signature. The pegmatitic melt owes its incom-
patible element (both HFSEs and LILEs) enrichment to 
its late-stage residual nature. When plotted in trace ele-
ment (Nb vs Y, and Rb vs Y + Nb) discriminant diagrams 
(Figure 5), clear majority of the samples plot in the syn-
collisional (syn COLG) – volcanic arc granites (VAG) 
field. 
 The inferred peralumious, S-type granitic parent cou-
pled with calc-alkaline nature and syncollisional + VAG 
signatures of these pegmatites indicate that the parent 
granitic melt and consequent pegmatitic bodies could be 
related to subduction processes. As discussed earlier,  
island arc formation in the west sector of SDFB has been 
reported by Sinha-Roy15,16. One possible parent source 
could be the granitoids occurring in the western Sendra–
Barotiya basin. However, due to paucity of data, geo-
chemical comparisons between these granites and the 
pegmatites from Rajgarh have not been carried out. 
 In this study, we have geochemically characterized the 
Rajgarh pegmatites and tried to infer their parentage. 
Whether these pegmatites are genetically related to the 
granites exposed in the western basin remains unan-
swered and could be addressed in future studies. The spa-
tial separation between the two basins should not be a 
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deterrent as pegmatites are known to form at large dis-
tances from their parent granitic melt6,10,11. Elaborate 
studies on these pegmatites and their relationship with 
co-existing rocks would provide further insight into their 
genesis and emplacement. 
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