
SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1696

*e-mail: jaikumar@tifr.res.in

Conversations: from Alan Turing to
NP-completeness

Compiled by Jaikumar Radhakrishnan*
School of Technology and Computer Science, Tata Institute of Fundamental Research, Mumbai 400 005, India

Scientists from various fields met at the Tata Institute of Fundamental Research on 2 January 2013
to discuss Alan Turing’s legacy. A panel consisting of the following made initial statements around
which the discussion was conducted.

Stephen A. Cook
Department of Computer Science,
University of Toronto, Canada

Stephen Cook is among the foremost computer scientists
of all times. He got his Bachelor’s degree from the Uni-
versity of Michigan, and his Master’s degree and Ph D
from Harvard University. He has made deep and influen-
tial contributions to many areas, including computational
complexity theory, proof complexity, programing lan-
guage semantics and parallel computation. Cook is best
known for his 1971 paper on ‘the complexity of theorem
proving procedures’, where he introduced the concept of
NP-completeness, and posed the famous ‘P not equal to
NP’ question, arguably the deepest question on the foun-
dations of efficient computation. In 1982, Cook received
the ACM Turing award, the highest prize in computer
science.

Manoj Gopalkrishnan
School of Technical and
Computer Science, TIFR, Mumbai

Manoj Gopalkrishnan obtained a B Tech degree from IIT
Kharagpur and his Ph D from the University of Southern
California. He has worked on reaction networks and self-
assembly, and the role they play in the emergence of
complexity and self-organization exhibited by the living
system. His other interests include cognition, scientific
method, computational learning theory, evolution,
algorithms, computational complexity theory, physics of
computation, quantum computing, algebraic geometry
and category theory.

Rohit J. Parikh
Department of Computer and
Information Science, Brooklyn
College, CUNY, New York

Rohit Parikh is an eminent mathematician, logician and
philosopher. He obtained his Bachelor’s and Ph D de-
grees from Harvard University. His 1961 work on the oc-
currence of terminal symbols in context-free languages,
now known as Parikh’s theorem, is one of the corner
stones of formal language theory. His current interests are
in reasoning about knowledge, belief revision, game the-
ory and philosophy of language. He has in the past
worked on recursive function theory, proof theory, formal
languages, nonstandard analysis and dynamic logic.

Milind Sohoni
Department of Computer Science
and Engineering, IIT Bombay,
Mumbai

Milind Sohoni obtained his Bachelor’s degree from IIT
Bombay, a Master’s degree from the University of Illi-
nois and his Ph D from IIT Bombay. He has worked on a
variety of areas in computer science, including combina-
torial optimization, geometry, game theory, formal aspects
of distributed systems, etc. He is one of the co-authors of
the so-called Sohoni–Mulmuley geometric complexity
approach to the P versus NP problem in theoretical com-
puter science. Sohoni is also the head of the Centre for
Technology Alternatives for Rural Areas, an academic
centre devoted to technology and its role in development.

Edited excerpts of the initial statements of the panelists
are reproduced below.

Turing: not destined to visit India

JR: Alan Turing was destined never to visit India1. His
elder brother, John, was born in his mother’s house in

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1697

Coonoor, southern India. His mother’s father was the
Chief Engineer of the Madras Railway Company. Julius
Turing, Alan’s father, joined the Indian Civil Service in
1896, specializing in Indian Law and the Tamil language.
He met his wife when he was on one of his voyages back
to England. Julius Turing worked in various parts of the
Madras Presidency. When the family was living in Odisha,
Ethel Turing, Alan’s mother, sailed back to England and
on 23 June 1912, Alan Mathison Turing was born in Eng-
land. Ethel and Julius Turing travelled back and forth
between India and England. The boys remained in England
and were educated there. In 1926, Julius Turing was super-
seded from the post of Chief Secretary of the Madras Presi-
dency. He resigned and left for England. After that their
connection with India was severed. As we all know, Alan
Turing went to Cambridge and did very well there. He was
also a champion athlete. Alan Turing’s personal life, glori-
ous and tragic, is not the subject of our discussion today;
we are here to discuss various facets of the legacy that the
science of computation owes to Alan Turing.
 I would like to start with Rohit Parikh: Turing devel-
oped his ideas about computation not in a vacuum; there
were attempts by logicians before him going back to Soc-
rates, Hilbert, Frege, Whitehead, Russel, Brouver and
several others, and finally Gödel. It will be useful to
place Turing’s contributions in this context of mathe-
matical logic and philosophy.

Is knowledge the same as justified true belief?

RJP: My remarks will concern the question, ‘When is
knowledge justified?’ This issue was raised by Socrates
in his ‘Dialogues with Theaetetus’. Turing addressed this
issue, Gettier addressed this issue again, and Wittgenstein
proposed a solution to this issue. The story goes as fol-
lows. The cast of characters is Socrates, Turing, Gettier,
Wittgenstein, and a five-year-old boy.
 Somebody calls at a house and a five-year old boy an-
swers. The person calling says, ‘Is your mother is at
home?’ The boy says, ‘Sorry, she is not’. And then the
person says, ‘Is your father at home?’ The boy says,
‘Sorry, he is not here either.’ Then, the person says all
right can you write down a note saying Socrates called.
So the boy says, ‘I’ll write down the note. And how do
you spell Socrates?’ The person says, ‘S O C R A T E S’.
Then there is a long pause. The boy says, ‘How do you
make an S?’ So, there, of course, the conversation comes
to an end. There is not much that can be done about this.
Now what does this have to do with the other older peo-
ple in our cast?
 The point here is that spelling out the word ‘Socrates’
to the boy does not help him to write it. All of our knowl-
edge is founded on assuming some basic facts and abilities
and without them an ‘explanation’ is no help to us. Socrates
appreciated this point as did Turing (see below for more).

 While reading the ‘Dialogues of Plato on Theaetetus’,
we came across a particular issue, namely the definition
of knowledge as justified true belief. Now, for you to
know something you have to believe it (obviously, you
cannot know something you do not believe). It has to be
true because knowledge must be true. The third condition
is justification, namely that whatever true belief you have
must be justified. In 1963, a philosopher Edmond Gettier2
suggested that this notion that knowledge is justified true
belief, which he mistakenly attributed to Plato, is not
correct.

Gettier’s objection: So his argument was the following:
sometimes you can have a true belief which has justifica-
tion, but there is a defect in the justification which you
are not aware of. For, let us suppose that you are Mr
Smith, and you are told by an authoritative source that
Mr Jones will get the US Vice-President’s job. So, of
course, you believe it and the belief is justified because a
trustworthy person told you this. Now you go into the
President’s office along with this man Mr Jones, and you
believe that the person who is going to get the job is in
that office, because Mr Jones is right there. Now it so
turns out that you are the person who is going to get the
job! So your belief that the person getting the job is in
that office is correct. It is also justified because you heard
about Mr Jones from an authoritative source. Nonethe-
less, it is not knowledge because your justification went
through the belief that Mr Jones was getting a job, a be-
lief that is not correct.
 So Gettier, while giving this counter example, seems to
suggest that this notion of knowledge as justified true
belief is due to Plato. Now, on reading this dialogue of
Plato’s, my collaborator, Adriana Renero and I saw that,
in fact, Socrates did not endorse this definition3. So this
definition that knowledge is justified true belief was sug-
gested not by Socrates, but by the boy Theaetetus. And
the boy said, ‘Oh yes Socrates! That is what I once heard
a man say, I had forgotten but it is coming back to me.
He said that true judgement with an account is know-
ledge. True judgement without an account falls outside
knowledge.’ But Socrates himself says at the end of the
Dialogues: ‘… therefore, knowledge is neither perception
nor true judgement nor an account added to true judge-
ment.’ So, quite opposite to what Gettier suggested, Soc-
rates did not accept knowledge is justified true belief. But
what is interesting is the reason that Socrates gave for
rejecting this account. And he said the following. He said
let us suppose somebody asks me for the first syllable of
my name. Then I say the first syllable of my name is the
letter ‘S’ followed by the letter ‘O’ and so that is the is
like a explanation or justification of the syllable. But
then we say what is the justification of the letter ‘S’?
We are reduced to a primitive element; the primitive ele-
ment cannot be justified. Therefore, if this definition (of
the primitive element) is correct, it cannot be known. If

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1698

you cannot know the letter ‘S’, how can you know the
syllable? So, Socrates gave a completely different argu-
ment from Gettier’s argument, undermining the same
notion.
 It turns out that Turing himself considered this issue4:

‘I assume then that the computation is carried out on
one-dimensional paper, i.e. on a tape divided into
squares. I shall also suppose that the number of sym-
bols which may be printed is finite. If we were to allow
an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent. The effect of
this restriction of the number of symbols is not very
serious. It is always possible to use sequences of sym-
bols in the place of single symbols… . The differences
from our point of view between the single and com-
pound symbols are that the compound symbols, if they
are too lengthy, cannot be observed at one glance. This
is in accordance with experience. We cannot tell at a
glance whether 9999999999999999 and 999999999999
999 are the same.’

Then, Turing goes on further and says the following:

‘The behaviour of the computer at any moment is
determined by the symbols which he is observing and
his state of mind at that moment. We may suppose that
there is a bound B to the number of symbols or squares
which the computer can observe at one moment. If he
wishes to observe more, he must use successive obser-
vations. We will also suppose that the number of states
of mind which need be taken into account is finite. The
reasons for this are of the same character as those
which restrict the number of symbols. If we admitted
an infinity of states of mind, some of them will “arbi-
trarily close” and will be confused. Again, the restric-
tion is not one which seriously affects computation,
since the use of more complicated states of mind can be
avoided by writing more symbols on the tape.’

So what Turing points out is that behind the notion of
computation, there is the notion of recognizing a single
symbol. You cannot recognize a string unless you recog-
nize a symbol and he says the alphabet must be finite for
that to be possible. But Turing does not say how even
when this is finite you can still recognize a symbol.
Because you can see that the boy can see the letter ‘S’ but
does not know what it is. The issue is that when we
reduce complex problems to simpler ones, we do still
have the problem of addressing the simpler problems,
perhaps the simplest ones that our analysis will come up
with.

Explanations come to an end somewhere: Wittgenstein
also addressed the problems that arise when viewing
complex tasks and ideas as being built up of simpler
ones. In his example, a note is presented to a grocer ask-

ing for five red apples. Wittgenstein5 describes how the
grocer goes about honouring this request, mechanically
comparing apples with other objects he knows to be red,
and counting up one, two, three… . Wittgenstein says:

‘But how does he know where and how he is to look up
the word “red” and what he is to do with the word
“five”. Well, I assume that he acts as I have described.
Explanations come to an end somewhere. But what is
the meaning of the word “five”? No such thing was in
question here, only how the word is used.’

Turing’s machine

JR: Parikh has already described the Turing machine,
which forms the basis in the formal study of computation.
I call upon Stephen Cook to explain how Turing under-
stood and helped us understand computation.

SAC: Turing’s 1936 paper, ‘On computable numbers,
with an application to the Entscheidungsproblem’, is
probably his greatest contribution and that is why he is
famous and with good reason. I do not know about
whether it is a contribution to philosophy or not, but cer-
tainly he is known as the father of computer science and I
believe that is justified. In his paper, Turing introduced
his mathematical model of computers, which is very
simple. I assume most people know what that is. But the
point is modern computers had not been discovered then.
Yet, he gave a convincing mathematical model of it and
argued that anything a person could do following an algo-
rithm on a piece of paper could be done using this
machine. Now, he was not the first one to give a mathe-
matical definition. Alonzo Church6 beat him by a little bit
with his lambda calculus. These notions turned out to be
mathematically equivalent: a function is computable in
lambda calculus if and only if it is computable by a Tur-
ing machine. But the point is that if you look at lambda
calculus, the definition is totally unconvincing. Why it
should compute any possible function is not clear. But
Turing gave a simpler model and a convincing argument
and that is why, I think, properly he should get credit.
 Of course, he did more than that in his paper. He con-
sidered a version (see also MacCormick7 on precisely
what Turing proved) of the halting problem for Turing
machines and proved that no Turing can solve it. The
halting problem is: given a description of a Turing ma-
chine and its input, that is, the initial tape configuration,
will that Turing machine halt or keep running forever. He
gave a simple convincing proof, based on a diagonal
argument that no Turing machine can solve this problem
on all inputs. In that paper he did more. He talked about
the Entsheidnungsproblem of Hilbert, which is the logical
satisfiability problem for predicate calculus and showed
that it was undecidable. Again, Church beat Turing by

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1699

about a year, but Turing’s proof was simple, for he re-
duced his halting problem to the Entsheidungsproblem.
The reduction goes as follows. With each Turing machine
one can associate a predicate calculus formula. The
Turing machine runs forever precisely when the formula
is satisfiable, for the infinite computation forms a model
for the formula.
 What is remarkable is that this simple model of Turing
machine has endured now for about a century, and gener-
ally, we computer scientists are convinced that this is the
correct abstraction of what is computable, and that is not
going to change. And even more, it turns out that in com-
plexity theory, where we are interested in not just what is
computable but also in how hard it is to compute it, effi-
cient computation is defined using a Turing machine. So
the complexity theorists still use Turing machines.
 I should also mention that Turing’s reduction played an
important role in my result about NP-completeness8. I
was thinking, if we limited the time of the computation,
maybe we could reduce the problem to propositional sat-
isfiability itself instead of predicate calculus satisfiability.
So, I concluded that the satisfiability problem for pro-
positional calculus is NP-complete, and that was the first
problem proved to be NP-complete. Anyway, that is the
influence of Turing’s work on my work, and my impres-
sion of Turing’s contribution.

Physical limits of computation

JR: Turing provided us an intuitive model computation.
One hears that we can apply complexity theory or ideas
from computational complexity theory to real-world
situations. Are the resources that are critical to the effi-
ciency of real-life processes in any way related to the re-
sources we use in computational complexity theory? I
now call upon Manoj Gopalkrishnan, who has thought
about these issues.

MG: I wanted to make a remark about something that
came up in Parikh’s and Cook’s statements. When Turing
wrote his paper on the Turing machine and the halting
problem, he used the word ‘computer’, but he always
referred to the computer as a ‘he’. So what he meant by a
computer was a human computer, a person performing
computation. This goes back to David Hilbert’s goal of
trying to axiomatize the process of doing mathematics.
The goal of this community of logicians was really to de-
scribe human intelligence. It was an anthropomorphic
project where you wanted to come up with some axioms
to describe how the human brain works, at least when it
is engaged in doing mathematics. And that was what the
Turing machine and the lambda calculus were attempting
to model.
 However, through the passage of time, the Church–
Turing hypothesis appears to have been strengthened. My

first recollection of reading something like this in print is
in David Deutsch’s 1985 article on quantum computing,
where he elevates this to a law of physics9 (see also
Brassard10). He says that one should regard the Church–
Turing thesis not as a statement just about the human
brain, but a statement about nature. No matter what sys-
tem you come up with in the natural world, if you try to
use it as a computer, you cannot do better than a Turing
machine. You cannot somehow use it to compute func-
tions that a Turing machine cannot compute. This is the
first part.
 Why should we believe this? What would be a plausi-
ble argument for something like this? Certainly there are
many phenomena in physics, like chaos or turbulence in
fluids, that we cannot predict. So are they violating this
idea that the Church–Turing thesis is a law of nature?
 Well, maybe it is an unfair comparison to ask a Turing
machine to predict a physical system. Because I can pro-
gram a computer to make some random choices, and you
cannot predict what that program is going to do without
looking at the random choices that program has made ei-
ther. A fair comparison is to ask a third observer to dis-
tinguish between the Turing machine and the real
physical system. This is an extension of the idea of the
Turing test11.
 So we consider a physical system and a Turing
machine, and both of them are producing data. For the
physical system you need some measuring instrument to
interface with it and give you some measurement. That
measurement has to be converted to a finite string of bits.
And the Turing machine is running for some time
and producing some finite string, let us say some bit
sequence, so I have two bit sequences. And if an observer
can distinguish between these two to tell which string
came from the Turing machine and which from the
physical system, then I would say the Turing machine is
not doing a good job of imitating the physical system.
 Why should we believe that for every choice of physi-
cal system and measuring device, we can come up with a
Turing machine that can imitate it. Let us work within
classical mechanics for a moment. In fact, let us stick to
Newton’s laws of motion. One can write down Newton’s
laws of motion as a system of differential equations. One
might imagine breaking up this system of differential
equations going on in some large space into very small
cubes. If you try to figure out what each cube is doing in
this space, it turns out to be following some rather simple
rules. If you make each cube smaller, you can make the
simulation more realistic, and it becomes harder to dis-
tinguish the computer program from the actual system.
This idea – that the behaviour of every physical system
can be approximated by cellular automata – is the basis
of the argument.
 Deutsch went two steps further. His next proposition
was something he called the strong Church–Turing thesis.
He suggested that perhaps we should start taking

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1700

polynomial-time Turing machines more seriously. Sure,
systems in the real world cannot compute uncomputable
functions, but maybe they cannot even compute functions
that are beyond polynomial time. He immediately went
on to suggest that this might well be false because of
quantum effects. That is an interesting story by itself, but
it is more like a detail for our present purposes ... the
point is one should replace the laws of classical mechan-
ics by quantum mechanics, so one should replace Turing
machines by an analogous notion, something like a quan-
tum Turing machine. And in that world, one would still
have an appropriate notion of complexity theory. So one
should think of computer science as describing laws of
nature, and not just an anthropomorphic project describ-
ing the human brain.
 Before we can talk about physics and complexity
theory, and their connections, we need to discuss a couple
of things computer scientists have known for the last 45
years or so, but are perhaps not so well appreciated out-
side computer science.
 How much resource is required to compute the factors
of a 100 bit number? The problem is I might have a huge
computer which is just a lookup table that has stored in it
the factors of all 100 bit numbers. All I have to do in this
computer is go and read the answers. This is unsatisfac-
tory; such a computer would have a size more than 2100,
and is impractical. So notions of uniformity come in. I do
not allow my computer to be just a lookup table. I insist
either that it be a Turing machine, or in a less uniform
model, but still keeping some uniformity. I insist that it is
a circuit, so the computation is uniform for an exponen-
tially large number of inputs. But if I change the size of
the input, I am allowed to use a different computer. A
physical way of interpreting this might be that we are
accounting not just for the cost of computation, but also
for the cost of building the computer.
 There is another issue which is speedup theorems.
Complexity theory does not measure time in seconds. All
we can say is that time grows asymptotically and there is
some scaling, and the reason for this is that we have the
linear speedup theorem. We can pump up the alphabet
size and do things twice as fast as we could do it before.
It seems to me that this is partly a cheat. We cannot
really do this in the real world. If we are building a
computer with a wider bus, we are saving on time, but
then we are spending more energy. One should really
think more carefully about not just how much time is re-
quired for it, but also how much energy is required for
it. Maybe that will also give some insight into settings in
the natural world where one wants to apply ideas from
computer science, viewing it as a law of physics. So one
wants to take a computational view to natural pheno-
mena.
 So time by itself is not the right measure. I do not think
energy is the right measure either. The problem with
energy actually goes back to some work of Charles

Bennett and Rolf Landauer12, motivated by a question
from John von Neumann. Von Neumann was interested in
this relationship between thermodynamics and com-
puters. He wanted to imagine an analogy of the computer
with the steam engine. A computer takes in energy and
produces not work as we understand it, but some sort of
computational work. He wanted to say that there must be
a limit, that one needs a certain amount of energy to do
computation.
 There were subtleties which came out in the work of
Bennett and Landauer. The conventional interpretation
for their results is that no energy is required for computa-
tion; there is no lower bound. But a more careful reading
of their work shows that their arguments are in the equi-
librium thermodynamic limit, which immediately forces
them to do their computations infinitely slowly, in the in-
finite time limit. So their results do not really apply to the
finite time limit. Nevertheless, their results also seem
to rule out energy by itself as a complexity measure.
Perhaps what I would suggest is some sort of product of
energy and time as the right quantity to look at. I have
some ideas on this, but they would be too speculative to
discuss at the moment.

The P  NP question and geometric invariant
theory

JR: The P  NP question has been a central question in
complexity theory ever since Cook’s paper12. There are
several versions of this problem. One version asks
whether, given a mathematical statement with a short
proof, one can find that proof efficiently (in time poly-
nomial in the length of the final proof). Another version
asks if, given a system of polynomial equations in several
variables, where each polynomial involves at most three
variables, it is possible to efficiently determine if there is
0–1 solution to this system of equations. Ketan Mulmuley
and Milind Sohoni have a novel approach to this prob-
lem. I would like to call upon Milind Sohoni to summa-
rize for us the geometric invariant theory approach and
how it connects this question to wider questions in
mathematics.

MS: One can view the Cook–Levin theorem or even
Turing’s theory as a way of representing computation, or
algebraizing it into a static object, which has really no
element of time. We are trying to show that some prob-
lem G cannot be reduced to another problem F with lim-
ited resources. Our approach, based on geometric
invariant theory, actually looks at transformations
between problems as also static object. So, the transfor-
mation as an algorithm has been converted into some sort
of algebraic structure. So, we consider all functions
reducible to F, which we call orbit of F. This orbit is an
algebraic object obtained by the action on F by a suitable

SPECIAL SECTION: THEORY OF COMPUTATION

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1701

group. So, the real question is whether G is in the orbit of
F or not, and in interesting specific cases, we would like
to show that G is not in the orbit of F. In joint work with
Ketan Mulmuley, we place this problem in the framework
of representation theory, which also plays a central role
in many problems in physics, and links them to some
hard problems in mathematics. We are trying to explicitly
describe invariants that must hold for elements of the
orbit of F, which we can show that G does not have. We
are studying the nature of these invariants.
 As a concrete example, consider an n  n matrix A of
variables (Xi j : i, j = 1, 2, …, n). There are two important
functions that can be defined using these variables, the
permanent and determinant. We would like to show that
the permanent is a harder function than the determinant.
For our purposes it would be sufficient if we can show
that there is no linear transformation that transforms a
permanent into a determinant, that is, we can build a
small matrix B, whose entries are just linear forms in the
entries of A, so that the permanent of B is the determinant
of A. In order for this question to be amenable to tools
from geometric invariant theory, we first need to show
that the determinant and permanent are stable functions.
This we have managed to do. Using this we hope to
obtain geometric invariants to explain using invariants
and representations why the permanent and determinant
are fundamentally different. One could conclude that the
permanent function, which is central to counting the
number of solutions to NP-hard problems cannot be com-
puted in polynomial time.
 This approach relates these problems in computational
complexity theory to several classical problems in other
areas. For example, one important problem in mathemat-
ics that this relates to is the plethysm problem, which
attempts to understand tensor products of basic represen-
tations and their factorization.

 This approach requires further work in the following
directions: (i) development of suitable mathematical theo-
ries to enable careful algebraic accounting, such as is
achieved through quantum groups, and (ii) through
deeper understanding of proof techniques in geometric
complexity theory.

1. Sriram, V., Origins of the father of computer science. The Hindu
(Madras and the World), 20 August 2012; http://www.thehindu.
com/news/cities/chennai/article3796302.ece

2. Gettier, E., Is justified true belief knowledge? Analysis, 1963, 23,
121–123.

3. Parikh, R. and Renerao, A., Justified true belief: Plato, Gettier and
Turing. In Turing 100: Philosophical Explorations of the Legacy
of Alan Turing (eds Bokulich, A. and Floyd, J.), Boston Studies in
the Philosophy of Science, Springer Verlag, forthcoming.

4. Turing, A. M., On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., Ser. 2, 1936, 42,
230–265.

5. Wittgenstein, L., Philosophical Investigations, Blackwell Publish-
ing, 2001.

6. Church, A., A note on the Entscheidungsproblem. J. Symb. Logic,
1936, 1, 40–41.

7. MacCormick, J., On computable numbers, with an application to
the Entscheidungsproblem, July 2010; users.dickinson.edu/~jmac/
selected-talks/turing-and-halting-problem.pdf

8. Cook, S. A., The complexity of theorem-proving procedures. In
Symposium on Theory of Computing, 1971, pp. 151–158.

9. Deutsch, D., Quantum theory, the Church–Turing principle and
the universal quantum computer. Proc. R. Soc. London, Ser. A,
1985, 400(1818), 97–117.

10. Brassard, G., Is information the key? Nature Phys., 2005, 1, 2–4;
doi: 10.1038/nphys134.

11. Turing, A., Computing machinery and intelligence. Mind, 1950,
59(236), 433–460.

12. Bennett, C. H. and Landauer, R., The fundamental physical limits
of computation. Sci. Am., 1985, 253(1), 48–56.

ACKNOWLEDGEMENT. We are grateful to John Barretto (Tata
Institute of Fundamental Research) for his help in transcribing the
original recording of the discussion, on which the above is based.

