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Scientists from various fields met at the Tata Institute of Fundamental Research on 2 January 2013 
to discuss Alan Turing’s legacy. A panel consisting of the following made initial statements around 
which the discussion was conducted. 
 
 
 
Stephen A. Cook 
Department of Computer Science,  
University of Toronto, Canada 
 
Stephen Cook is among the foremost computer scientists 
of all times. He got his Bachelor’s degree from the Uni-
versity of Michigan, and his Master’s degree and Ph D 
from Harvard University. He has made deep and influen-
tial contributions to many areas, including computational 
complexity theory, proof complexity, programing lan-
guage semantics and parallel computation. Cook is best 
known for his 1971 paper on ‘the complexity of theorem 
proving procedures’, where he introduced the concept of 
NP-completeness, and posed the famous ‘P not equal to 
NP’ question, arguably the deepest question on the foun-
dations of efficient computation. In 1982, Cook received 
the ACM Turing award, the highest prize in computer 
science. 
 
 
 
Manoj Gopalkrishnan 
School of Technical and  
Computer Science, TIFR, Mumbai 
 
 
 
Manoj Gopalkrishnan obtained a B Tech degree from IIT 
Kharagpur and his Ph D from the University of Southern 
California. He has worked on reaction networks and self-
assembly, and the role they play in the emergence of 
complexity and self-organization exhibited by the living 
system. His other interests include cognition, scientific 
method, computational learning theory, evolution,  
algorithms, computational complexity theory, physics of 
computation, quantum computing, algebraic geometry 
and category theory. 
 

 
 
Rohit J. Parikh 
Department of Computer and  
Information Science, Brooklyn  
College, CUNY, New York 
 
 

Rohit Parikh is an eminent mathematician, logician and 
philosopher. He obtained his Bachelor’s and Ph D de-
grees from Harvard University. His 1961 work on the oc-
currence of terminal symbols in context-free languages, 
now known as Parikh’s theorem, is one of the corner 
stones of formal language theory. His current interests are 
in reasoning about knowledge, belief revision, game the-
ory and philosophy of language. He has in the past 
worked on recursive function theory, proof theory, formal 
languages, nonstandard analysis and dynamic logic. 
 
Milind Sohoni 
Department of Computer Science  
and Engineering, IIT Bombay,  
Mumbai 
 
Milind Sohoni obtained his Bachelor’s degree from IIT 
Bombay, a Master’s degree from the University of Illi-
nois and his Ph D from IIT Bombay. He has worked on a 
variety of areas in computer science, including combina-
torial optimization, geometry, game theory, formal aspects 
of distributed systems, etc. He is one of the co-authors of 
the so-called Sohoni–Mulmuley geometric complexity 
approach to the P versus NP problem in theoretical com-
puter science. Sohoni is also the head of the Centre for 
Technology Alternatives for Rural Areas, an academic 
centre devoted to technology and its role in development. 
 

Edited excerpts of the initial statements of the panelists 
are reproduced below. 

Turing: not destined to visit India 

JR: Alan Turing was destined never to visit India1. His 
elder brother, John, was born in his mother’s house in 
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Coonoor, southern India. His mother’s father was the 
Chief Engineer of the Madras Railway Company. Julius 
Turing, Alan’s father, joined the Indian Civil Service in 
1896, specializing in Indian Law and the Tamil language. 
He met his wife when he was on one of his voyages back 
to England. Julius Turing worked in various parts of the 
Madras Presidency. When the family was living in Odisha, 
Ethel Turing, Alan’s mother, sailed back to England and  
on 23 June 1912, Alan Mathison Turing was born in Eng-
land. Ethel and Julius Turing travelled back and forth  
between India and England. The boys remained in England 
and were educated there. In 1926, Julius Turing was super-
seded from the post of Chief Secretary of the Madras Presi-
dency. He resigned and left for England. After that their 
connection with India was severed. As we all know, Alan 
Turing went to Cambridge and did very well there. He was 
also a champion athlete. Alan Turing’s personal life, glori-
ous and tragic, is not the subject of our discussion today; 
we are here to discuss various facets of the legacy that the 
science of computation owes to Alan Turing. 
 I would like to start with Rohit Parikh: Turing devel-
oped his ideas about computation not in a vacuum; there 
were attempts by logicians before him going back to Soc-
rates, Hilbert, Frege, Whitehead, Russel, Brouver and 
several others, and finally Gödel. It will be useful to 
place Turing’s contributions in this context of mathe-
matical logic and philosophy. 

Is knowledge the same as justified true belief? 

RJP: My remarks will concern the question, ‘When is 
knowledge justified?’ This issue was raised by Socrates 
in his ‘Dialogues with Theaetetus’. Turing addressed this 
issue, Gettier addressed this issue again, and Wittgenstein 
proposed a solution to this issue. The story goes as fol-
lows. The cast of characters is Socrates, Turing, Gettier, 
Wittgenstein, and a five-year-old boy. 
 Somebody calls at a house and a five-year old boy an-
swers. The person calling says, ‘Is your mother is at 
home?’ The boy says, ‘Sorry, she is not’. And then the 
person says, ‘Is your father at home?’ The boy says, 
‘Sorry, he is not here either.’ Then, the person says all 
right can you write down a note saying Socrates called. 
So the boy says, ‘I’ll write down the note. And how do 
you spell Socrates?’ The person says, ‘S O C R A T E S’. 
Then there is a long pause. The boy says, ‘How do you 
make an S?’ So, there, of course, the conversation comes 
to an end. There is not much that can be done about this. 
Now what does this have to do with the other older peo-
ple in our cast? 
 The point here is that spelling out the word ‘Socrates’ 
to the boy does not help him to write it. All of our knowl-
edge is founded on assuming some basic facts and abilities 
and without them an ‘explanation’ is no help to us. Socrates 
appreciated this point as did Turing (see below for more). 

 While reading the ‘Dialogues of Plato on Theaetetus’, 
we came across a particular issue, namely the definition 
of knowledge as justified true belief. Now, for you to 
know something you have to believe it (obviously, you 
cannot know something you do not believe). It has to be 
true because knowledge must be true. The third condition 
is justification, namely that whatever true belief you have 
must be justified. In 1963, a philosopher Edmond Gettier2 
suggested that this notion that knowledge is justified true 
belief, which he mistakenly attributed to Plato, is not  
correct. 
 
Gettier’s objection: So his argument was the following: 
sometimes you can have a true belief which has justifica-
tion, but there is a defect in the justification which you 
are not aware of. For, let us suppose that you are Mr 
Smith, and you are told by an authoritative source that  
Mr Jones will get the US Vice-President’s job. So, of 
course, you believe it and the belief is justified because a 
trustworthy person told you this. Now you go into the 
President’s office along with this man Mr Jones, and you 
believe that the person who is going to get the job is in 
that office, because Mr Jones is right there. Now it so 
turns out that you are the person who is going to get the 
job! So your belief that the person getting the job is in 
that office is correct. It is also justified because you heard 
about Mr Jones from an authoritative source. Nonethe-
less, it is not knowledge because your justification went 
through the belief that Mr Jones was getting a job, a be-
lief that is not correct. 
 So Gettier, while giving this counter example, seems to 
suggest that this notion of knowledge as justified true  
belief is due to Plato. Now, on reading this dialogue of 
Plato’s, my collaborator, Adriana Renero and I saw that, 
in fact, Socrates did not endorse this definition3. So this 
definition that knowledge is justified true belief was sug-
gested not by Socrates, but by the boy Theaetetus. And 
the boy said, ‘Oh yes Socrates! That is what I once heard 
a man say, I had forgotten but it is coming back to me. 
He said that true judgement with an account is know-
ledge. True judgement without an account falls outside 
knowledge.’ But Socrates himself says at the end of the 
Dialogues: ‘… therefore, knowledge is neither perception 
nor true judgement nor an account added to true judge-
ment.’ So, quite opposite to what Gettier suggested, Soc-
rates did not accept knowledge is justified true belief. But 
what is interesting is the reason that Socrates gave for  
rejecting this account. And he said the following. He said 
let us suppose somebody asks me for the first syllable of 
my name. Then I say the first syllable of my name is the 
letter ‘S’ followed by the letter ‘O’ and so that is the is 
like a explanation or justification of the syllable. But  
then we say what is the justification of the letter ‘S’?  
We are reduced to a primitive element; the primitive ele-
ment cannot be justified. Therefore, if this definition (of 
the primitive element) is correct, it cannot be known. If 
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you cannot know the letter ‘S’, how can you know the 
syllable? So, Socrates gave a completely different argu-
ment from Gettier’s argument, undermining the same  
notion. 
 It turns out that Turing himself considered this issue4: 
 

‘I assume then that the computation is carried out on 
one-dimensional paper, i.e. on a tape divided into 
squares. I shall also suppose that the number of sym-
bols which may be printed is finite. If we were to allow 
an infinity of symbols, then there would be symbols 
differing to an arbitrarily small extent. The effect of 
this restriction of the number of symbols is not very  
serious. It is always possible to use sequences of sym-
bols in the place of single symbols… . The differences 
from our point of view between the single and com-
pound symbols are that the compound symbols, if they 
are too lengthy, cannot be observed at one glance. This 
is in accordance with experience. We cannot tell at a 
glance whether 9999999999999999 and 999999999999 
999 are the same.’ 

 
Then, Turing goes on further and says the following: 
 

‘The behaviour of the computer at any moment is  
determined by the symbols which he is observing and 
his state of mind at that moment. We may suppose that 
there is a bound B to the number of symbols or squares 
which the computer can observe at one moment. If he 
wishes to observe more, he must use successive obser-
vations. We will also suppose that the number of states 
of mind which need be taken into account is finite. The 
reasons for this are of the same character as those 
which restrict the number of symbols. If we admitted 
an infinity of states of mind, some of them will “arbi-
trarily close” and will be confused. Again, the restric-
tion is not one which seriously affects computation, 
since the use of more complicated states of mind can be 
avoided by writing more symbols on the tape.’ 

 
So what Turing points out is that behind the notion of 
computation, there is the notion of recognizing a single 
symbol. You cannot recognize a string unless you recog-
nize a symbol and he says the alphabet must be finite for 
that to be possible. But Turing does not say how even 
when this is finite you can still recognize a symbol.  
Because you can see that the boy can see the letter ‘S’ but 
does not know what it is. The issue is that when we  
reduce complex problems to simpler ones, we do still 
have the problem of addressing the simpler problems, 
perhaps the simplest ones that our analysis will come up 
with. 
 
Explanations come to an end somewhere: Wittgenstein 
also addressed the problems that arise when viewing 
complex tasks and ideas as being built up of simpler 
ones. In his example, a note is presented to a grocer ask-

ing for five red apples. Wittgenstein5 describes how the 
grocer goes about honouring this request, mechanically 
comparing apples with other objects he knows to be red, 
and counting up one, two, three… . Wittgenstein says: 
 

‘But how does he know where and how he is to look up 
the word “red” and what he is to do with the word 
“five”. Well, I assume that he acts as I have described. 
Explanations come to an end somewhere. But what is 
the meaning of the word “five”? No such thing was in 
question here, only how the word is used.’ 

Turing’s machine 

JR: Parikh has already described the Turing machine, 
which forms the basis in the formal study of computation. 
I call upon Stephen Cook to explain how Turing under-
stood and helped us understand computation. 
 
SAC: Turing’s 1936 paper, ‘On computable numbers, 
with an application to the Entscheidungsproblem’, is 
probably his greatest contribution and that is why he is 
famous and with good reason. I do not know about 
whether it is a contribution to philosophy or not, but cer-
tainly he is known as the father of computer science and I 
believe that is justified. In his paper, Turing introduced 
his mathematical model of computers, which is very  
simple. I assume most people know what that is. But the 
point is modern computers had not been discovered then. 
Yet, he gave a convincing mathematical model of it and 
argued that anything a person could do following an algo-
rithm on a piece of paper could be done using this  
machine. Now, he was not the first one to give a mathe-
matical definition. Alonzo Church6 beat him by a little bit 
with his lambda calculus. These notions turned out to be 
mathematically equivalent: a function is computable in 
lambda calculus if and only if it is computable by a Tur-
ing machine. But the point is that if you look at lambda 
calculus, the definition is totally unconvincing. Why it 
should compute any possible function is not clear. But 
Turing gave a simpler model and a convincing argument 
and that is why, I think, properly he should get credit. 
 Of course, he did more than that in his paper. He con-
sidered a version (see also MacCormick7 on precisely 
what Turing proved) of the halting problem for Turing 
machines and proved that no Turing can solve it. The 
halting problem is: given a description of a Turing ma-
chine and its input, that is, the initial tape configuration, 
will that Turing machine halt or keep running forever. He 
gave a simple convincing proof, based on a diagonal  
argument that no Turing machine can solve this problem 
on all inputs. In that paper he did more. He talked about 
the Entsheidnungsproblem of Hilbert, which is the logical 
satisfiability problem for predicate calculus and showed 
that it was undecidable. Again, Church beat Turing by 
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about a year, but Turing’s proof was simple, for he re-
duced his halting problem to the Entsheidungsproblem. 
The reduction goes as follows. With each Turing machine 
one can associate a predicate calculus formula. The  
Turing machine runs forever precisely when the formula 
is satisfiable, for the infinite computation forms a model 
for the formula. 
 What is remarkable is that this simple model of Turing 
machine has endured now for about a century, and gener-
ally, we computer scientists are convinced that this is the 
correct abstraction of what is computable, and that is not 
going to change. And even more, it turns out that in com-
plexity theory, where we are interested in not just what is 
computable but also in how hard it is to compute it, effi-
cient computation is defined using a Turing machine. So 
the complexity theorists still use Turing machines. 
 I should also mention that Turing’s reduction played an 
important role in my result about NP-completeness8. I 
was thinking, if we limited the time of the computation, 
maybe we could reduce the problem to propositional sat-
isfiability itself instead of predicate calculus satisfiability. 
So, I concluded that the satisfiability problem for pro-
positional calculus is NP-complete, and that was the first 
problem proved to be NP-complete. Anyway, that is the 
influence of Turing’s work on my work, and my impres-
sion of Turing’s contribution. 

Physical limits of computation 

JR: Turing provided us an intuitive model computation. 
One hears that we can apply complexity theory or ideas 
from computational complexity theory to real-world 
situations. Are the resources that are critical to the effi-
ciency of real-life processes in any way related to the re-
sources we use in computational complexity theory? I 
now call upon Manoj Gopalkrishnan, who has thought 
about these issues. 
 
MG: I wanted to make a remark about something that 
came up in Parikh’s and Cook’s statements. When Turing 
wrote his paper on the Turing machine and the halting 
problem, he used the word ‘computer’, but he always  
referred to the computer as a ‘he’. So what he meant by a 
computer was a human computer, a person performing 
computation. This goes back to David Hilbert’s goal of 
trying to axiomatize the process of doing mathematics. 
The goal of this community of logicians was really to de-
scribe human intelligence. It was an anthropomorphic 
project where you wanted to come up with some axioms 
to describe how the human brain works, at least when it 
is engaged in doing mathematics. And that was what the 
Turing machine and the lambda calculus were attempting 
to model. 
 However, through the passage of time, the Church–
Turing hypothesis appears to have been strengthened. My 

first recollection of reading something like this in print is 
in David Deutsch’s 1985 article on quantum computing, 
where he elevates this to a law of physics9 (see also 
Brassard10). He says that one should regard the Church–
Turing thesis not as a statement just about the human 
brain, but a statement about nature. No matter what sys-
tem you come up with in the natural world, if you try to 
use it as a computer, you cannot do better than a Turing 
machine. You cannot somehow use it to compute func-
tions that a Turing machine cannot compute. This is the 
first part. 
 Why should we believe this? What would be a plausi-
ble argument for something like this? Certainly there are 
many phenomena in physics, like chaos or turbulence in 
fluids, that we cannot predict. So are they violating this 
idea that the Church–Turing thesis is a law of nature? 
 Well, maybe it is an unfair comparison to ask a Turing 
machine to predict a physical system. Because I can pro-
gram a computer to make some random choices, and you 
cannot predict what that program is going to do without 
looking at the random choices that program has made ei-
ther. A fair comparison is to ask a third observer to dis-
tinguish between the Turing machine and the real 
physical system. This is an extension of the idea of the 
Turing test11. 
 So we consider a physical system and a Turing  
machine, and both of them are producing data. For the 
physical system you need some measuring instrument to 
interface with it and give you some measurement. That 
measurement has to be converted to a finite string of bits. 
And the Turing machine is running for some time  
and producing some finite string, let us say some bit  
sequence, so I have two bit sequences. And if an observer 
can distinguish between these two to tell which string 
came from the Turing machine and which from the 
physical system, then I would say the Turing machine is 
not doing a good job of imitating the physical system. 
 Why should we believe that for every choice of physi-
cal system and measuring device, we can come up with a 
Turing machine that can imitate it. Let us work within 
classical mechanics for a moment. In fact, let us stick to 
Newton’s laws of motion. One can write down Newton’s 
laws of motion as a system of differential equations. One 
might imagine breaking up this system of differential 
equations going on in some large space into very small 
cubes. If you try to figure out what each cube is doing in 
this space, it turns out to be following some rather simple 
rules. If you make each cube smaller, you can make the 
simulation more realistic, and it becomes harder to dis-
tinguish the computer program from the actual system. 
This idea – that the behaviour of every physical system 
can be approximated by cellular automata – is the basis 
of the argument. 
 Deutsch went two steps further. His next proposition 
was something he called the strong Church–Turing thesis. 
He suggested that perhaps we should start taking  



SPECIAL SECTION: THEORY OF COMPUTATION 
 

CURRENT SCIENCE, VOL. 106, NO. 12, 25 JUNE 2014 1700 

polynomial-time Turing machines more seriously. Sure, 
systems in the real world cannot compute uncomputable 
functions, but maybe they cannot even compute functions 
that are beyond polynomial time. He immediately went 
on to suggest that this might well be false because of 
quantum effects. That is an interesting story by itself, but 
it is more like a detail for our present purposes ... the 
point is one should replace the laws of classical mechan-
ics by quantum mechanics, so one should replace Turing 
machines by an analogous notion, something like a quan-
tum Turing machine. And in that world, one would still 
have an appropriate notion of complexity theory. So one 
should think of computer science as describing laws of 
nature, and not just an anthropomorphic project describ-
ing the human brain. 
 Before we can talk about physics and complexity  
theory, and their connections, we need to discuss a couple 
of things computer scientists have known for the last 45 
years or so, but are perhaps not so well appreciated out-
side computer science. 
 How much resource is required to compute the factors 
of a 100 bit number? The problem is I might have a huge 
computer which is just a lookup table that has stored in it 
the factors of all 100 bit numbers. All I have to do in this 
computer is go and read the answers. This is unsatisfac-
tory; such a computer would have a size more than 2100, 
and is impractical. So notions of uniformity come in. I do 
not allow my computer to be just a lookup table. I insist 
either that it be a Turing machine, or in a less uniform 
model, but still keeping some uniformity. I insist that it is 
a circuit, so the computation is uniform for an exponen-
tially large number of inputs. But if I change the size of 
the input, I am allowed to use a different computer. A 
physical way of interpreting this might be that we are  
accounting not just for the cost of computation, but also 
for the cost of building the computer. 
 There is another issue which is speedup theorems. 
Complexity theory does not measure time in seconds. All 
we can say is that time grows asymptotically and there is 
some scaling, and the reason for this is that we have the 
linear speedup theorem. We can pump up the alphabet 
size and do things twice as fast as we could do it before. 
It seems to me that this is partly a cheat. We cannot  
really do this in the real world. If we are building a  
computer with a wider bus, we are saving on time, but 
then we are spending more energy. One should really 
think more carefully about not just how much time is re-
quired for it, but also how much energy is required for  
it. Maybe that will also give some insight into settings in  
the natural world where one wants to apply ideas from  
computer science, viewing it as a law of physics. So one 
wants to take a computational view to natural pheno-
mena. 
 So time by itself is not the right measure. I do not think 
energy is the right measure either. The problem with  
energy actually goes back to some work of Charles  

Bennett and Rolf Landauer12, motivated by a question 
from John von Neumann. Von Neumann was interested in 
this relationship between thermodynamics and com-
puters. He wanted to imagine an analogy of the computer 
with the steam engine. A computer takes in energy and 
produces not work as we understand it, but some sort of 
computational work. He wanted to say that there must be 
a limit, that one needs a certain amount of energy to do 
computation. 
 There were subtleties which came out in the work of 
Bennett and Landauer. The conventional interpretation 
for their results is that no energy is required for computa-
tion; there is no lower bound. But a more careful reading 
of their work shows that their arguments are in the equi-
librium thermodynamic limit, which immediately forces 
them to do their computations infinitely slowly, in the in-
finite time limit. So their results do not really apply to the 
finite time limit. Nevertheless, their results also seem  
to rule out energy by itself as a complexity measure.  
Perhaps what I would suggest is some sort of product of 
energy and time as the right quantity to look at. I have 
some ideas on this, but they would be too speculative to 
discuss at the moment. 

The P  NP question and geometric invariant  
theory 

JR: The P  NP question has been a central question in 
complexity theory ever since Cook’s paper12. There are 
several versions of this problem. One version asks 
whether, given a mathematical statement with a short 
proof, one can find that proof efficiently (in time poly-
nomial in the length of the final proof). Another version 
asks if, given a system of polynomial equations in several 
variables, where each polynomial involves at most three 
variables, it is possible to efficiently determine if there is 
0–1 solution to this system of equations. Ketan Mulmuley 
and Milind Sohoni have a novel approach to this prob-
lem. I would like to call upon Milind Sohoni to summa-
rize for us the geometric invariant theory approach and 
how it connects this question to wider questions in 
mathematics. 
 
MS: One can view the Cook–Levin theorem or even 
Turing’s theory as a way of representing computation, or 
algebraizing it into a static object, which has really no 
element of time. We are trying to show that some prob-
lem G cannot be reduced to another problem F with lim-
ited resources. Our approach, based on geometric 
invariant theory, actually looks at transformations  
between problems as also static object. So, the transfor-
mation as an algorithm has been converted into some sort 
of algebraic structure. So, we consider all functions  
reducible to F, which we call orbit of F. This orbit is an 
algebraic object obtained by the action on F by a suitable 
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group. So, the real question is whether G is in the orbit of 
F or not, and in interesting specific cases, we would like 
to show that G is not in the orbit of F. In joint work with 
Ketan Mulmuley, we place this problem in the framework 
of representation theory, which also plays a central role 
in many problems in physics, and links them to some 
hard problems in mathematics. We are trying to explicitly 
describe invariants that must hold for elements of the  
orbit of F, which we can show that G does not have. We 
are studying the nature of these invariants. 
 As a concrete example, consider an n  n matrix A of 
variables (Xi j : i, j = 1, 2, …, n). There are two important 
functions that can be defined using these variables, the 
permanent and determinant. We would like to show that 
the permanent is a harder function than the determinant. 
For our purposes it would be sufficient if we can show 
that there is no linear transformation that transforms a 
permanent into a determinant, that is, we can build a 
small matrix B, whose entries are just linear forms in the 
entries of A, so that the permanent of B is the determinant 
of A. In order for this question to be amenable to tools 
from geometric invariant theory, we first need to show 
that the determinant and permanent are stable functions. 
This we have managed to do. Using this we hope to  
obtain geometric invariants to explain using invariants 
and representations why the permanent and determinant 
are fundamentally different. One could conclude that the 
permanent function, which is central to counting the 
number of solutions to NP-hard problems cannot be com-
puted in polynomial time. 
 This approach relates these problems in computational 
complexity theory to several classical problems in other 
areas. For example, one important problem in mathemat-
ics that this relates to is the plethysm problem, which  
attempts to understand tensor products of basic represen-
tations and their factorization. 

 This approach requires further work in the following 
directions: (i) development of suitable mathematical theo-
ries to enable careful algebraic accounting, such as is 
achieved through quantum groups, and (ii) through 
deeper understanding of proof techniques in geometric 
complexity theory. 
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