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What does it mean to say that a fixed infinite string is 
random? In this article we will attempt to trace the  
history of this question and the fundamental role of 
computability theory in our understanding of random-
ness. In particular, we will describe Turing’s observa-
tions on the notion of normal numbers and their 
construction and how that connects up with algo-
rithmic randomness. 
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Introduction 

IN the early 20th century, when science was making great 
strides in physics and the foundations of modern mathe-
matics were being deeply examined, a rigorous approach 
to randomness and probability was also being explored 
and developed. Historically, probability theory goes back 
at least to the 1600s to the work of Blaise Pascal in the 
study of games of chance. But probability theory became 
a field in its own right only in the 20th century. 
 One of the first serious attempts to formalize random-
ness was made by von Mises1 in 1919. Intuitively, if an 
infinite sequence of 0’s and 1’s is random, then the num-
ber of 0’s has to be the same as the number of 1’s in the 
limit. However, this is clearly not a sufficient condition, 
because the sequence with 1’s in odd positions and 0’s in 
even positions has this property, but it is obviously not 
‘random’ as it is easily ‘predictable’. An infinite se-
quence, argued von Mises, should be considered random 
if the number of 0’s and 1’s is the same in the limit not 
only for the entire sequence but for every admissible infi-
nite subsequence. Although von Mises’s notion of admis-
sibility was motivated by statistical tests, it lacked an 
adequate formal definition. It was Church2 in 1940 who 
suggested that the right notion of admissible subse-
quences was precisely that of computable subsequences. 
Formal computability theory, which was introduced by 
Church and Turing3 in 1936, since then has been inevita-
ble in any rigorous treatment of randomness. However, 
the definition of von Mises for random sequences turns 
out to be inadequate. Ville4, in 1936, showed there are  

infinite binary sequences that are random in the sense of 
von Mises, but in every initial segment the number of  
zeros is more than the number of ones. Such infinite  
sequences form a measure zero set and therefore cannot 
be considered truly random. 
 Turning to another aspect of the question, we know 
that every real number in the unit interval [0, 1] has an 
infinite binary expansion 0.a1a2 . Thus real numbers 
can be identified with infinite sequences of 0’s and 1’s 
(or infinite sequences over some other base). However, 
we can name only countably many of the set of all real 
numbers. For, a name is just a finite sequence of a finite 
set of symbols (letters of the English alphabet, for exam-
ple). Thus, all rational numbers have names (because all 
integers have names and rationals are ratios of integers). 
And some highly privileged irrational numbers like  and 
e have names. We can name some more numbers indi-
rectly. For instance, we can talk of the positive root of 
x2 – 2 or the real root of x3 – 5. The problem is that the 
set of all names, being finite words over a finite alphabet, 
is countable and the set of all real numbers is uncount-
able. In terms of measure theory, the set of nameable real 
numbers, for any given finite alphabet used for naming, is 
a measure zero set. The rest of the real numbers, which is 
almost all of them, cannot be named. It is tempting to  
define random real numbers as those that cannot be 
named. However, we need to be careful about the notion 
of nameability itself, which is something ambiguous. For 
instance, consider all numbers that are nameable in  
English and order these names ordered lexicographically 
and in increasing order of their lengths. Then, ‘the first 
real number that is not nameable in a thousand words’ 
can be ‘named’ in just 12 words! This is known as 
Berry’s paradox. 
 Let us consider Bernoulli trials: we repeatedly flip an 
unbiased coin and record the outcome ‘heads’ as 1 and 
‘tails’ as 0. If we repeat this ad infinitum, we obtain an 
infinite binary sequence which corresponds to a real 
number in [0, 1]. Thus, we perform this random experi-
ment of coin-flips and the outcomes are infinite binary 
sequences. But can we talk of a given binary sequence 
being random? An intuitive notion is that a random  
sequence is unpredictable, in the sense that there are  
no patterns in it. However, this needs to be carefully  
formalized. For instance, the infinite string of 0’s is obvi-
ously not random. On the other hand, the infinite binary 
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expansion of an irrational number like 2  does not re-
veal any easily predictable pattern, although it is com-
pletely predictable! 

Randomness and normal numbers 

What then are random strings? In this section we will dis-
cuss this question further. Suppose we ask both Alice and 
Bob to produce a 100-bit random string each. Both Alice 
and Bob perform 100 independent unbiased coin flips to 
produce strings x and y respectively. Suppose x is a string 
of all zeros and y is a string with a fair distribution of 0’s 
and 1’s. Although both x and y are equally likely (they 
both occur with probability 2–100), an observer is more 
likely to accept y as a random string than x! To quote 
Laplace: ‘In the game of heads and tails, if head comes 
up a hundred times in a row then it appears to us extra-
ordinary ...’, because, intuitively, those sequences in 
which we observe a rule that is easy to grasp are rare. 
 Thus, in random infinite binary sequences one would 
expect that every block of r bits appears with limiting 
frequency 2–r. This was proposed by Emile Borel5 in 
1909, earlier than von Mises, as the right notion of  
random sequences. This definition was motivated by the 
law of large numbers, and real numbers in (0, 1) whose 
binary expansion are such sequences are called normal 
numbers. 
 
Definition 1. A real number in [0, 1] is called a normal 
number in base b if its infinite expansion in base b is very 
balanced: every block of digits of length r occurs with 
limit frequency b–r, for every positive integer r. 
 An absolutely normal number, also called just normal 
number, is one that is normal in every base. 
 
Borel proved that the set of nonnormal numbers has 
Lebesgue measure 0. Borel’s notion of normality is 
clearly a desirable property for random sequences, but are 
all normal numbers random? Unfortunately, they need not 
be random. Champernowne6 first showed that the number 
0.123…9101112… is normal in base 10, but it is clearly 
not random because there is an algorithm for generating 
the sequence making it completely predictable. Similarly, 
Copeland and Erdös7 showed that the expansion 0.235… 
obtained by listing down all primes in base 10 is normal 
in base 10. Although this rules out normality in specific 
bases as the right notion of randomness, it remains a chal-
lenging open question whether well-known natural exam-
ples of real numbers like , e, 2,  ln 2, etc. are normal 
or not in some base. 
 The other major question was whether we can find 
numbers that are normal in every base. Or perhaps the  
notion of absolutely normal numbers is the right notion of 
randomness. Thus the question of finding explicit num-
bers that are normal in every base assumes importance. 

What does explicit mean in this context? Numbers like  
, e, 2  and ln 2 are clearly explicit: we know them in 
the sense that we know their properties and know infinite  
series converging to them. In other words, these are com-
putable numbers. 
 So, what are computable numbers, formally? 
 
Definition 2. Fix a programing language, say C, for the 
discussion. A real number x  (0, 1) is computable if 
there is a C program for x that, on input n, outputs the 
nth bit in the binary expansion of x. 
 
The definition of computable numbers is robust. A num-
ber x is computable in base 2 if it is computable in any 
other base b. Moreover, by the Church–Turing thesis, for 
any conceivable programing language we will obtain the 
same set of computable real numbers. This notion of 
computable numbers, of course, had to wait until the  
Turing’s work formalizing computability. 

Turing’s construction of normal numbers 

In particular, Turing interpreted ‘explicit’ as computable 
and made precise Borel’s question as asking if there are 
computable normal numbers. Since computable reals 
form a countably infinite set (we can enumerate all C 
programs), they form a measure zero set. Hence we 
would not expect random numbers to be computable. 
 In an unpublished manuscript titled ‘A note on normal 
numbers’ (handwritten on the back of a copy of his 1936 
‘On computable numbers, with an application to the 
Entscheidungsproblem’ paper), Turing outlined a con-
struction of computable normal numbers. His was the 
first satisfactory construction of computable normal 
numbers. The manuscript was discovered much later in 
the 1960s. There were earlier attempted constructions of 
Lebesgue (in 1909) and Sierpinski (in 1917) that were  
inadequate. In this section we will outline the main ideas 
in Turing’s work based on Becher et al.8. 
 Turing’s first observation is a combinatorial result. Fix 
the alphabet  = {0, 1, … , b – 1} for base b representa-
tion. Let nb,r(k, i) denote the number of strings in k in 
which a fixed string w  r occurs exactly i times. 
Clearly, this number is independent of the choice of w. 
For example 
 

 ,1( , ) ( 1) .k i
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k
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As is well known, for a random string in k the expected 
number of occurrences of each letter in  is k/b and the 
actual number of occurrences is tightly concentrated 
around its expected value. Turing first generalizes this 
concentration bound. 
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Lemma 3. For a base b  2 and (6r/k) <   b–r, 
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Let S(x, b, w, k) denote the number of occurrences of a 
string w in the first k digits of the base b expansion of x. 
Let 
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Then, since 15/16{ | | ( , , , ) | }rx S x b w k kb k   is a finite  
union of intervals with rational end-points, Ak is also a  
finite union of intervals with rational endpoints. Let (Ak) 
denote its Lebesgue measure (i.e. the sum of the lengths 
of the said intervals). We can estimate it as follows. 
 
Proposition 4. For all k larger than a constant k0 
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Theorem 5 (Turing). For any   k0, k kA   contains 
all numbers that are not absolutely normal. 
 
From Ak, Turing defines another collection of intervals 
Ek,n, where 
 
 Ek,0 = (0, 1)  and  Ek,n = Ak22n+1  Ek,n – 1  (n, 1), 
 
where n is the unique rational so that  (Ek,n) = 1 – (1/k) + 
(1/k22n + 1). Let Ek = n  0Ek,n. Since Ek,n is a monotoni-
cally decreasing sequence of sets with limit Ek, it follows 
that (Ek) = 1 – 1/k. Furthermore, since Ek   kA, it 
follows that Ek contains only normal numbers. 

A computable normal number 

Turing’s algorithm for computing a normal number 
x = 0.x1x2x3 works in stages. Choosing the first bit x1 of 
x amounts to halving the unit interval (0, 1). Likewise, 
every subsequent choice xi, i  2 will keep halving the  
interval and the construction needs to ensure that the  
intersection of the current interval with the set of  
normal numbers always has a positive measure. Suppose 
the interval at the nth stage is In when we have  
already fixed the first n bits x1, x2, …, xn. Inductively,  
assume that 
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k
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Now, notice that Ek, n+1  In contains (Ek,n  In)\(Ek,n\ 
Ek,n+1). Furthermore 
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Putting it together, it follows that 
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Now, we partition In into two halves In = I0
n  I1

n by setting 
xn+1 = 0 and xn+1 = 1 respectively. Clearly for some 
b  {0, 1} we have 
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Letting In+1 = Ib
n we have established the induction step.  

Hence the construction yields a computable normal  
number x. 

Algorithmic randomness 

Turing’s construction of the set Ek = n0Ek,n which con-
tains only normal numbers and (Ek) = 1 – 1/k can be  
interpreted as constructing the computable sequence kE  
which has measure zero in the limit and contains all non-
normal numbers. This is an example of a Martin-Löf test. 
Martin-Löf’s idea9 is basically a formalization of the  
notion of statistical tests for randomness using computabi-
lity theory. He essentially developed the rudiments of a 
computable version of measure theory by defining what it 
means for a set to be of computable measure one or zero. 
The basic open sets are intervals of the form Jw  (0, 1) 
consisting of all numbers of the form 0.wx1x2  for arbi-
trary xi  {0, 1} for words w  {0, 1}*. A set A is com-
putably null if for each  > 0 we can find a computable 
sequence of words wk such that    

kwA J  and 
| |

0 2 .kw
k 


  Computable measure one sets are just the 
complements of null sets. 
 
Definition 6. A Martin-Löf statistical test consists of a 
computable sequence of intervals {Jw(m,n)} for words 
w(m, n)  {0, 1}* such that for each m it holds that  
(nJw(m, n))  2–m. 
 An alleged random sequence x fails the test at confi-
dence level m if x  Jw(m, n) for some n. If for some m0  
the sequence x passes the test for all m  m0, then x is  
said to pass the test. 
 A sequence is Martin-Löf random if it passes all Martin-
Löf statistical tests. 
 
Since there are countably many algorithms, there are 
countably many Martin-Löf statistical tests. Since the  
union of computable null sets is also a computable null 
set, as shown by Martin-Löf, it follows that there is a uni-
versal statistical test for randomness. 
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 The set of Martin-Löf random sequences (equivalently, 
Martin-Löf random reals) forms a measure one subset of 
(0, 1) and each of its elements is noncomputable. But 
how do we know that this is the right notion of random-
ness? Just as in the 1930s many different formal defini-
tions of computable functions were proposed by Gödel, 
Church, Turing, Markov, Kleene, Post, etc. and all of 
these definitions coincided giving us the so-called Church–
Turing thesis, a similar phenomenon occurred for  
the definition of algorithmic randomness which we now 
explain. 

Three approaches to randomness 

Statistical approach: This is the intuitive approach to 
defining randomness that we started out with with von 
Mises and Borel, culminating in Martin-Löf’s definition 
of randomness. The intuitive idea is that random  
sequences should not have recognizable patterns, i.e. 
have recognizable rare properties. Computable null  
sets are precisely these rare properties as formalized by 
Martin-Löf. 
 
Incompressibility approach: The idea here is that  
recognizable patterns in a sequence means the sequence 
can be compressed. Hence, random sequences are the  
incompressible sequences. This approach was pioneered 
by Kolmogorov, and pursued by Levin and Chaitin in the 
1960s. 
 
Gambling approach: The roots of probability theory go 
back to analysing odds in gambling. A random sequence 
is one against which betting strategies cannot succeed 
more often than fail. Intuitively, there is always some bet-
ting strategy that can exploit rare patterns in a nonrandom 
sequence. For random sequences, no computable betting 
strategy can make infinite money by predicting succes-
sive bits. This is the martingale approach started by Ville 
in 1939 and developed by Schnorr 1971. 
 We now explain these two approaches in some more 
detail. 

Incompressibility 

We recall that in his seminal 1936 work Turing defined 
the (Turing) machine model. A fundamental concept was 
that of universal Turing machines. These are machines 
that can take the description of any Turing machine and 
simulate its computation on a given input, analogous to a 
compiler (or operating system). Turing constructed uni-
versal Turing machines in his paper. 
 For any finite string x its plain Kolmogorov complexity 
C(x), w.r.t. a universal Turing machine U, is the length of 
the smallest program  such that U() = x. Thus,  is a 
compressed form of x. For example, if x is the binary 

string 02n, then there is a program  of length log2 n + c, 
where  consists of the binary description of n along with 
a program of size c with instructions to produce the string 
02n from n. Note that c is a constant independent of n. Thus 
 

 2
2(0 ) log .

n
C n c   

 
 For any string x, clearly C(x)  |x| + c, because a pro-
gram  that contains the entire string x with instructions 
to print it out will suffice. 
 For a fixed universal Turing machine U, consider C(x) 
for all x in the set {0, 1}n. Clearly, the number of strings 
such that C(x)  n – d for any given d is bounded by  
2n–d+1 because each program of length at most n – d can 
produce at most one string x  {0, 1}n. Thus, for each 
constant d, at least 2n – 2n – d + 1 strings x of length n exist 
such that 
 
 C(x)  |x| – d. 
 
If C(x)  |x| – d then x is said to be d-incompressible. 
 Although the C-measure is good for several purposes, 
it turns out that in order to define random sequences  
using Kolmogorov complexity we need a somewhat dif-
ferent measure. It is a refinement of C(x) and is denoted 
by K(x). The measure K(x) is the Kolmogorov complexity 
of string x with respect to only those universal Turing 
machines U whose domain is prefix-free. Now we are 
ready to define a random sequence (or a real in (0, 1))  
using incompressibility. A sequence 0.x1x2… is Kolmo-
gorov random if there is some constant c such that for 
every prefix x1x2 … xn of the sequence 
 
 K(x1x2 … xn)  n – c. 
 
The following result shows that Martin-Löf random reals 
coincide with incompressible reals. 
 
Theorem 7 (Schnorr 1971). The following are equi-
valent for a real number x = 0.x1x2x3 
 
 1. x is Martin-Löf random. 
 2. There is a positive integer c such that for all n 
 
 K(x1x2xn)  n – c. 
 
Since the two approaches are different and yet the notions 
are equivalent, this increases our confidence that we have 
hit upon the correct notion of random sequences. We next 
discuss yet another approach. 

The Gambler’s approach 

Here the approach is based on betting strategies. The  
intuitive idea of a random sequence is one against which 
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no betting strategy can make an unbounded amount of 
money by predicting successive bits. Formally, a martin-
gale or betting strategy is a function d : {0, 1}*  + 
such that d() > 0 and 
 

 ( 0) ( 1)( ) ,
2

d y d yd y 
  

 
for every finite string y. A martingale succeeds on a real 
number x if lim sup d(x|n) = . 
 The definition can be interpreted as betting on the suc-
cessive bits of the sequence x = 0.x1x2 The gambler 
starts with some capital d() > 0 before seeing any bit of 
x. At the ith step, after he has seen x1x2  xi – 1 he bets a 
certain fraction d(x1x2  xi – 1) on xi = 0 and the remain-
der (1 – )d(x1x2

  xi – 1) on xi = 1. The amount bet on the 
correct value will get doubled and the amount on the 
wrong value will be lost. Let z = x1x2  xi – 1. Then, for 
the outcome 0 his capital will be d(z0) = 2d(z) and for 
the outcome 1 his capital would be d(z1) = 2(1 – )d(z). 
The actual strategy is the choice of  = (d(z0))/(2d(z)). 
 The next theorem due to Ville shows that betting 
strategies capture the null sets (subsets of (0, 1) of 
Lebesgue measure zero). 
 
Theorem 8 (Ville 1939). A set A  (0, 1) has Lebesgue 
measure zero precisely if there is a martingale d that suc-
ceeds on all x  A. 
 
It turns out, as shown by Schnorr10, that with a suitable 
definition of ‘computable’ betting strategies, such strate-
gies succeed on precisely the computable null sets con-
tained in (0, 1). Hence we have the following equivalence 
theorem. 
 
Theorem 9. For any random sequence x = x1x2   
(0, 1), the following statements are equivalent. 
 
1. The real number x  (0, 1) is Martin-Löf random. 
2. No computable martingale succeeds on the number x. 
3. There is a positive integer c such that for all n 
 
        K(x|n)  n – c. 
 
Thus all three definitions of randomness coincide, tied 
together through computability. This is all very fine, but 
can we give an example of an infinite random sequence? 
Random sequences in (0, 1) form a measure one set. Can 
we not point out even one of them? We conclude this sec-
tion by defining Chaitin’s  (ref. 11). Fix a prefix-free 
universal Turing machine U and the alphabet, say {0, 1}. 
Let H denote the set of all programs p  {0, 1}* such  
that the simulation by U of the program p on blank tape 
halts. 
 
 | |2 .p

p H





    

Since U is prefix-free,   1. Since there are programs 
that halt and programs that do not halt, 0 < < 1.  
It turns out that the expansion of  is a random  
sequence. 

Normal numbers revisited 

We discuss normal numbers again in this last section. As 
we have seen computable functions play a crucial role in 
the definition and understanding of random sequences. 
Since normal numbers were introduced by Borel in an at-
tempt to define random sequences, it is satisfying to note 
that normal numbers are indeed random with respect to a 
weaker model of computation, namely finite automata. 
Finite automata are a very restricted version of Turing 
machines: they have a finite state control (like Turing 
machines) but are memoryless. Finite automata are  
well studied in computer science (e.g. see ref. 12). In 
other words, finite automata are to normal numbers ex-
actly what computable functions are to random se-
quences. 
 The first connection between finite automata and  
normal numbers was noted by Agafonov13. Suppose 
x = 0.x1x2  is a real number in (0, 1). Given any deter-
ministic finite automaton M = (Q, , , q0, F), we can  
define a subsequence xi1, xi2,  from the xis by running the 
automaton on the sequence x and outputting only those 
bits xij when M enters an accepting state in F. This yields 
a new real number yM = 0.xi1xi2  defined by the automa-
ton M from x. 
 It turns out, quite interestingly, that the number x is 
normal if and only if the number yM is normal for every 
deterministic finite automaton M that outputs an infinite 
subsequence xi1xi2 . 
 It turns out that we can capture precisely normal num-
bers using betting strategies that are computable by finite 
automata. We can also capture normal numbers using an 
appropriate notion of incompressibility. 
 
Definition 10. A betting strategy computable by a finite 
automaton is defined by a DFA over alphabet, say , 
where each state q has a fraction 0  a(q)  1 for each 
letter a   so that a a(q) = 1, where a(q) is the 
fraction of the capital bet by the state q that the next let-
ter is an a. This gives rise to the function d : {0, 1}*  
+ such that d() > 0 and 
 

 ( 0) ( 1)( ) ,
2

d y d yd y 
  

 
for every finite string y. The strategy succeeds on a se-
quence x = x1x2  if lim sup d(x1x2  xn) = . 
 
 The following was shown by Schnorr and Stimm14, and 
Bourke et al.15. 
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Theorem 11. A number x  (0, 1), x = 0.x1x2  is normal 
if and only if there is no betting strategy computable by a 
finite automaton that succeeds on x. 
 
Just as prefix-free Kolmogorov complexity captures ran-
dom sequences: random sequences are the Kolmogorov 
incompressible sequences, Ziv and Lempel16 showed that 
in the setting of finite automata, incompressibility coin-
cides with normal numbers. 
 
Definition 12. A finite-state compressor is a determi-
nistic finite automation with output strings (including  
) labeling each state transitions. A lossless compressor 
is a finite-state compressor whose input string can be  
recovered uniquely from the output string and final  
state. 
 The finite-state compressor C is said to compress a 
number x = 0.x1x2  if 
 

 1 2 ...( )
lim inf 1.nC x x x

n
  

 
We state the formal result of Ziv and Lempel16. 
 
Theorem 13. A real number x  (0, 1), where 
x = 0.x1x2  is normal if and only there is no finite-state 
compressor for x. 
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