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Making measurements on single quantum systems is 
considered difficult, almost impossible if the state is  
a priori unknown. Protective measurements suggest a 
possiblity to measure single quantum systems and 
gain some new information in the process. Protective 
measurement is described here, both in the original 
and generalized form. The degree to which the system 
and the apparatus remain entangled in a protective 
measurement, is assessed. Possible exterimental tests 
of protective measurements are also discussed. 
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Introduction 

QUANTUM mechanics has been a tremendously successful 
theory for describing microscropics systems. Till date 
there has not been a single experiment which can demon-
strate a violation of quantum theory. The success of quan-
tum mechanics is so widespread and robust that people 
have come to believe that it is the ultimate theory for  
describing microscopic systems, and that classical  
mechanics should be an approximation of quantum  
mechanics in an appropriate limit. However, this transi-
tion from quantum to classical has been a sticky issue 
since the time of the very inception of quantum theory. 
 While the state of a classical particle is adequately de-
scribed by the knowledge of its position and momentum, 
quantum mechanics does not even allow simultaneous 
well-defined values of these two quantities. The state of  
a quantum particle is strangely described by a complex  
entity called the wavefunction. Although the dynamics of 
state, or the wavefunction, is exactly described by the 
Schrödinger equation, the meaning of measurable quanti-
ties takes an altogether different meaning. An observable 
described by an operator A is believed to have a well-
defined value only if the state of the system is an eigen-
state of this operator, namely 
 

 | | ,n n na a a〉 = 〉A  (1) 
 

where an is called the eigenvalue of the observable.  
Eigenvalue is also the outcome in a measurement of the 

observable A. Measurements of A on identical copies of 
same system, in the state (say) |ak〉, will all lead to the 
same result ak. Thus, an eigenvalue is a well-defined  
value of A if the system is in its eigenstate. 
 However, if the system is in a state (say) |ψ〉 which is 
not an eigenstate of A, the value which one should assign 
to the observable described by A is ambiguous. All one 
can do is to define an expectation value of A as 
 

 | | .A ψ ψ〈 〉 = 〈 〉A  (2) 
 
A measurement of A in the state |ψ〉 would still yield an 
eigenvalue, one from the set {ai}. However, the important 
difference is that measurements of A on identical copies 
of same system, in the state |ψ〉, will all lead to different 
eigenvalues. The state |ψ〉 can be expanded in terms of 
the eigenstates of A as 
 

 | | ,n n
n

c aψ 〉 = 〉∑  (3) 

 
where cn are some complex numbers. The expectation 
value of A can now be written as 
 

 2 2| | | | | | .n n n n n
n n

c a a c a〈〈 〉 = 〉 =∑ ∑A A  (4) 

 
The above expression is conventionally interpreted as an 
average of the measurement results on a large ensemble 
of identically prepared systems in the state |ψ〉. A fraction 
|ck|2 of the total systems yields the eigenvalue ak. 
 The point to note in the above example is that while the 
value of A is well-defined for a single system in an  
eigenstate |ak〉, the expectation value 〈A〉 in a state |ψ〉 
cannot be defined for a single system. It appears to have a 
meaning only for a large number of measurements on an 
ensemble of identical systems. 
 Issues like the one described above still plague quan-
tum theory, although they are mainly interpretational  
issues. What sense one should make of the formalism of 
quantum theory is not clear. 

Quantum measurement process 

While evolution of quantum systems is well understood, 
what happens in a measurement process is not clear. This 
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is simply because the apparatus we use is classical, and 
how information from a quantum system is carried over 
to the classical apparatus is not part of the quantum for-
malism. Quantum theory merely postulates that in a  
measurement process, the value obtained is an eigenvalue 
of the observable being measured; it results in the reduc-
tion of the original state to the corresponding eigenstate 
of the observable. How this process comes about is not 
understood, and remains an open problem. 
 John von Neumann1 was the first to attempt putting a 
quantum measurement process on a mathematical foot-
ing. According to him, a quantum measurement can be 
broken up into two processes. 
 
• Process 1 is a unitary process which establishes corre-

lations between the state of the system and state of the 
apparatus. It basically correlates the various ampli-
tudes of the state of the system to various possible out-
comes of the apparatus. The apparatus too has to be 
treated as a quantum system. For example, if the initial 
state |ψ〉 is given by |ψ〉 = 1 |n

i i ic a=∑ 〉  and the initial 
state of the apparatus is given by |d0〉, then process 1 is 
a unitary operation 

 

  0 Process1
1 1

| | | | .
n n

i i i i i
i i

d c a c d a
= =

〉 〉 ⎯⎯⎯⎯→ 〉 〉∑ ∑  (5) 

 
  What process 1 has done is to correlate the eigenstates 

of A with distinct states of the apparatus. The states 
|di〉 could, for example, correspond to some discrete 
positions of a pointer needle. 

• Process 2 is a non-unitary process which picks out a 
single outcome from the superposition described by 
eq. (5) 

 

  Process 2
1

| | | | .
n

i i i k k
i

c d a d a
=

〉 〉 ⎯⎯⎯⎯→ 〉 〉∑  (6) 

 
  It is obvious that process 2 cannot be realized through 

the Schrödinger evolution. The process constitutes the 
heart of the so-called measurement problem. 

 
The mechanism behind process 2 has confounded scien-
tists since the beginning of quantum theory. It is no  
surprise that researchers have come up with suggested 
resolutions which can be considered radical to fantastic 
like the Everett many worlds interpretation2 or the GRW 
proposal3. 

Strong and (almost) impulsive measurement 

Let us first put the von Neumann process 1 on a rigorous 
mathematical footing. Process 1 can be constructed by a 
suitable interaction between the system and the apparatus 
and a time evolution. Conventional quantum measure-

ments may be considered as the result of a strong interac-
tion between the system and the apparatus, active for a 
short duration of time. The Hamiltonian of the system 
and the apparatus may be written as 
 
 H(t) = HS + HA + g(t)QSQA ≈ g(t)QSQA, (7) 
 
where HS, HA represent the free Hamiltonians of the sys-
tem and the apparatus respectively, and QS, QA the opera-
tors of the system and the apparatus respectively, through 
which they interact. We introduce another observable RA 
conjugate to RA, such that [RA, QA] = i  and RA|r〉 = r|r〉. 
 The apparatus is prepared in an initial state |φ(r0)〉 
which is a packet of |r〉 states, centred at r = r0. The  
initial state of the system |ψs〉 can be expanded in  
terms of the eigenstates of QS, |ψs〉 = | ,i i ic s∑ 〉  where 
QS|si〉 = si | si〉. Let us assume that the measurement inter-
action is switched on at t = 0 and continues till t = T, with 
the proviso 0 ( )d 1.T g t t∫ =  The state, after the measure-
ment interaction, is given by 
 

 ( i/ )
0| ( ) e | | ( )sT rψ φ−Ψ 〉 = 〉 〉S AQ Q  

 

 ( i/ )
0| ( ) e | | ( )i i

i

T c s rφ−Ψ 〉 = 〉 〉∑ S AQ Q  

 

 0| ( ) | | ( )i i i
i

T c s r sφΨ 〉 = 〉 + 〉∑  

 

     1 1 0 1 2 2 0 2| | ( ) | | ( )c s r s c s r sφ φ= 〉 + 〉 + 〉 + 〉  
 

     3 3 0 3| | ( ) ... .c s r sφ+ 〉 + 〉 +  (8) 
 
The measurement interaction results in various eigen-
states of QS becoming entangled with packets of |r〉 states 
of the apparatus, localized at different values of r. A nar-
row packet localized at r0 + sk, for example, would imply 
a measured eigenvalue sk of the system. However, at this 
stage there is not one outcome, but a superposition of  
various outcomes with different probabilities. 

Quantum measurement of single systems 

The preceding discussion of quantum measurement has 
an interesting consequence for single systems, i.e. sys-
tems for which an ensemble of identical copies is not 
available. If the state is a priori unknown and an ensem-
ble of identical copies is available, one can perform many 
measurements on different copies, and from the resulting 
probabilities of various outcomes |ci|2, try to infer the 
values of Ci and reconstruct the original state using 
|ψs〉 = | .i i ic s∑ 〉  
 However, if there is only a single system available, one 
can choose to make one measurement, which will give 
one a single eigenvalue (say) sk, and the state would have 
collapsed to |sk〉. The measurements give absolutely no  
information regarding the original state |ψs〉. This means 
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that if the state of a single system is unknown, it will  
always remain unknown. This is something profound and 
implies that an unknown reality cannot be unvieled, even 
in principle. 
 The expectation value of any observable always has a 
well-defined value in any state. But the question that 
arises is whether the expectation value has any meaning 
for a single quantum system. Since the only interpretation 
of the expectation value traditionally understood is in 
terms of repeated measurements on an ensemble, the an-
swer seems to be that the expectation value has no mean-
ing for a single quantum system. 
 However, if one could somehow measure the expecta-
tion value of an observable in a single measurement, one 
could argue that it has a meaning. If one could measure 
the expectation value of an unknown state, it would imply 
that the expectation value has an objective reality, and 
would probably lend credence to the objective reality of 
the quantum state itself. 

Protective measurements 

About 22 years ago, Aharonov, Anandan and Vaidman 
(AAV) proposed a quantum measurement scheme involv-
ing very weak and adiabatic measurements, which they 
called ‘protective’ measurements4–10, where they claimed 
the possibility of actually measuring the expectation val-
ue of any observable in a restricted class of states. The 
proposal initially raised surprise and scepticism among 
many11–18. 
 While conventional quantum measurements are con-
sidered strong and impulsive, protective measurements 
make use of the opposite limit where coupling between 
the system and the apparatus is weak and adiabatic. For 
protective measurements to work, the system should be in 
a non-degenerate eigenstate of its Hamiltonian. The inter-
action should be so weak and adiabatic that one cannot 
neglect the free Hamiltonians. Let the Hamiltonian of the 
combined system be 
 
 H(t) = HA + HS + g(t)QAQS, (9) 
 
where various entities have the same meaning as in the 
preceding section. The coupling g(t) acts for a long time 
T and is switched on and off smoothly. The interaction is 
normalized as 0 d ( ) 1,T t g t∫ =  and is assumed to be small 
and almost constant for the most part, justifying the  
approximation, g(t) ≈ 1/T. If |Ψ(0)〉 is the state vector of 
the combined apparatus–system just before the measure-
ment process begins, the state vector after T is given by 
 

 
0

i| ( ) exp ( )d | (0) ,
T

T H τ τ
⎛ ⎞
⎜ ⎟Ψ 〉 = − Ψ 〉
⎜ ⎟
⎝ ⎠

∫T  (10) 

 
where T is the time ordering operator. Since the time  
dependence of the Hamiltonian is trivial, we may divide 

the interval [0, T] into N equal intervals ΔT, so that 
ΔT = T/N. Since the full Hamiltonian commutes with  
itself at different times during [0, T], one can write  
eq. (10) as 
 

i 1| ( ) exp | (0) .
N

TT
T

⎡ ⎤⎡ ⎤Δ ⎛ ⎞Ψ 〉 = − + + Ψ 〉⎢ ⎥⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

A S A SH H Q Q  

 (11) 
 
In order to solve the dynamics, one has to worry about 
whether different operators sitting in the exponential 
commute with each other or not. Since designing the  
apparatus is in the hands of the experimenter, we consider 
the case when QA commutes with the free Hamiltonian of 
the apparatus, i.e., [QA, HA] = 0, so that we can have eigen-
states |ai〉 such that QA|ai〉 = ai | ai〉 and HA|ai〉 = | .a

i iE a 〉  
The operators of the system, QS, HS, may or may not 
commute with each other; the energy eigenstates of the 
system are given by 
 
 HS|μ〉 = μ|μ〉. (12) 
 
The states |ai〉 are also the exact eigenstates of the instan-
taneous Hamiltonian H(t), in the apparatus subspace. So, 
the exact instantaneous eigenstates can be written in a 
factorized form | | ,ia μ〉 〉  where |μ〉  are defined by 
 

 1 | | .ia
T

μ μ μ⎛ ⎞+ 〉 = 〉⎜ ⎟
⎝ ⎠

S SH Q  (13) 

 
The system states |μ〉  depend on the eigenvalue of QA. 
Let us assume the initial state to be a direct product of a 
non-degenerate eigenstate of HS, |ν〉, and |φ(r0)〉: 
 
 0| (0) | | ( ) .rν φΨ 〉 = 〉 〉  (14) 
 
Introducing complete set of exact eigenstates in the above 
equation, the wave function at a time T can now be  
written as 
 

(i/ ) ( , )
0

,

| ( ) e | | | | || ( ) ,iE a N T
i i

i

T a a rμ

μ

μ μ ν φΔΨ 〉 = 〉 〉〈 〉〈 〉∑  (15) 

 
where the exact instantaneous eigenvalues E(ai, μ) can be 
written as 
 

 1( , ) | | | | .a
i i iE a E a

T
μ μ μ μ μ= + 〈 〉 + 〈 〉S SQ H  (16) 

 
Till this point we have not made any approximations,  
except for ignoring the switching on and switching off 
times. Now if the measurement interaction is very weak 
and highly adiabatic, 1/T is very small, so that 
 
 | | (1/ ) ... .Tμ μ〉 = 〉 + +O  (17) 
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In the large T limit, one can assume the states to be  
unperturbed, i.e., |μ〉  ≈ |μ〉. The energy eigenvalues now 
assume the form 
 

 1( , ) | | | | .a
i i S i SE a E Q a H

T
μ μ μ μ μ≈ + 〈 〉 + 〈 〉  (18) 

 

Assuming the states to be unperturbed and the energy to 
be first order in 1/T amounts to doing a first-order pertur-
bation theory. In this approximation | || 0,μ ν〉 〉 ≈  and the 
sum over μ disappears and only the term where μ = ν 
survives. This allows us to write the apparatus part of the 
exponent again in the operator form 
 

A A S(i/ ) ( / ) ( / )
0| ( ) e | | ( ) .SH T i Q Q i H TT rν ν ν φ− − 〈 〉 − 〈 〉Ψ 〉 ≈ 〉 〉  (19) 

 
Since QA is an operator conjugate to RA, it will act as a 
generator of translation for |r〉 states. The second term in 
the exponent will shift the centre of the packet |φ(r0)〉 by 
an amount 〈ν|QS|ν〉 
 

 (i/ ) ( / )
0| ( ) e | | ( ) .T i TT rν

νψ ν φ− −〉 = 〉 + 〈 〉 〉AH
SQ  

 

Thus, at the end of the measurement interaction, the cen-
tre of the apparatus packet |φ(r0)〉 shifts by 〈ν|QS|ν〉. The 
apparatus thus records, not the eigenvalue of QS as in eq. 
(8), but its expectation value in the initial unknown state 
|ν〉. Not only that, within this approximation the system 
and the apparatus are not entangled. 

Some clarifications 

Protective measurements were widely misunderstood and 
resulted in a lot of criticim11–19. Here we list some fea-
tures of protective measurements which should clarify 
various issues that were raised. 
 
• Protective measurements do not require that the state 

of the system be a priori fully known. 
  Example: atom in a trap where one may not know the 

exact potential, but does know that the atom will be in 
the ground state. 

  One may have made an energy measurement on a  
system to know that it is in a particular energy eigen-
state, but without the knowledge of the Hamiltonian 
one cannot know what the eigenstate is and hence find-
ing the expectation value of an observable is not pos-
sible. 

• The shift in the pointer state is proportional to the  
expectation value of the observable being measured. 

• The expectation value is obtained in a single measure-
ment on a single system. 

• As shown in the preceding analysis, an observable 
whose expectation value is measured, need not commute 
with the Hamiltonian of the system. An objection with 
a contradicting claim was raised by Uffink19. Gao20 
pointed out the flaw in the argument. 

• The system is not entangled with the apparatus after 
the measurement. 

• The state of the system does not change after the mea-
surement (within the approximation used). 

• Expectation value of another operator can be meas-
ured, after the measurement of one. 

Generalized protective measurements 

It has also been demonstrated8 that protective measure-
ments can, in principle, be performed even in the most 
general case where [QA, HA] ≠ 0 and [QS, HS] ≠ 0. How-
ever in actual practice, finding the right observables for 
the apparatus, and satisfying all the constraints may be a 
formidable challenge. This is so because in this case, the 
initial apparatus is not supposed to be a packet of  
eigenstates of the operator conjugate to QA. Rather it is 
supposed to be a packet of eigenstates of the operator 
conjugate to an operator Y defined as 
 

 | |,
ja j j

j

a a= 〈 〉 〉 〈∑ AY Q  (20) 

 
where various entities have the same meaning as in the 
preceding analysis. Whether such an operator can always 
be found in practice, is an open question. 
 In this analysis we have not considered the dynamical 
effect of the ‘free’ Hamiltonian of the apparatus. This 
Hamiltonian will cause the spreading of the packet of the 
initial apparatus state. In normal course of action, one 
would have ignored this effect. However, since the pro-
tective measurements are supposed to be adiabatic, the 
effect of the Hamltonian of the apparatus, though small, 
will be cumulative. In other words, the pointer packet 
may spread considerably during the course of protective 
measurement interaction. Finding the centre of a large 
packet, to read out the measured expectation value, would 
be a difficult task and one may have to apply some  
special techniques to do so8. 

Does it really work for a single system? 

The success of protective measurements crucially depends 
on the assumption that the entanglement between the  
system and the apparatus can be made negligibly small, 
but the system will still shift the pointer state by a finite 
amount. 
 Let us now quantify the effect of the terms we have 
neglected till now. If we consider the state of the system 
and apparatus to be perturbed to first order in 1/T, as  
opposed to being unperturbed in the preceding analysis, 
the final state, to next higher order in 1/T, would look 
like 
 

 A(i/ ) ( / )
0| ( ) e | | ( )

TH T iT r
ν

νν φ− −Ψ 〉 ≈ 〉 + 〈 〉 〉SQ  
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 A(i/ ) ( / )
0

( )

1 e | | ( ) ,H T i T r
T

μ
μν μ

μ ν

α μ φ− −

≠

+ 〉 + 〈 〉 〉∑ SQ  (21) 

 
where αμν involve matrix elements of QSQA among vari-
ous unperturbed states, and unperturbed energies. The 
above is an entangled state and in a real measurement 
there is a probability that the original state of the system, 
which was |ν〉 to begin with, gets changed to (say) |μ〉 and 
the apparatus state gets shifted by 〈QS〉μ. The probability 
of this happening is proportional to 1/T2. 
 One can see that by increasing T and weakening the  
interaction, the probability of the protective measurement 
failing can be made smaller, but can never be made zero. 
In general, it has been rigorously shown that the state dis-
turbance in protective measurements scales as 1/T2 (ref. 
21). This indicates that although a practical implementa-
tion of protective measurement is possible, for a single 
unknown state, one can never be sure that the protective 
measurement has yielded the expectation value in the 
original state. Hence it cannot be used to argue for a strict 
objective reality of the wavefunction. 

Experimental realization 

The idea of protective measurements was proposed more 
than two decades ago, but an experimental demonstration 
of the same is still lacking. The reason for this is that 
there are several constraints which the system and the  
apparatus should satisfy before one can carry out a  
successful protective measurement. The adiabatic nature 
of interaction may also present some difficulty. 

Cold atoms for testing protective measurements 

A proposal was made for testing protective measurements 
using cold atoms in a Stern–Gerlach-like set-up22. We 
briefly describe the same in the following (see Figure 1). 
Low velocity of cold atoms may be exploited for achieving 
adiabaticity to some degree. The Hamiltonian of the atom 
with mass m and magnetic moment μ can be written as 
 

 
2

0 0 ( ) · .
2 iB n g t B n

M
μ μ= − ⋅ −

PH σ x σ  (22) 

 
 

 
 

Figure 1. A schematic diagram of a Stern–Gerlach-type experiment 
with cold atoms. 

Initial system–apparatus state 
 
 0| (0) | | (0, ) , | | ,p nφ ε σΨ 〉 = +〉 〉 ⋅ ±〉 = ± ±〉  (23) 
 
where |φp(0, ε)〉 is a Gaussian wavepacket in the momentum 
space, with zero average momentum and a width ε in 
momentum space. The state after a time T is given by 
 
 | ( ) e | | (0,  ) .iHT

pT φ ε−Ψ 〉 = +〉 〉  (24) 
 
The position operators x will act as a generator of transla-
tion in momentum space, and the system-apparatus state, 
at the end of the measurement interaction, is given by 
 
 

2
0 0/2| ( ) e e e | | (0, )x iiP T M i B T B n nx

pT μ μ φ ε− − ⋅Ψ 〉 ≈ +〉 〉  
 
    0e | | ( , ( )) .i B T

p iB n Tμ φ μ σ ε−
+= +〉 〈 ⋅ 〉 〉  (25) 

 
The state of the spin and the state of the atom are disen-
tangled and | ( , ( ))p iB n Tφ μ σ ε+〈 ⋅ 〉 〉  is a Gaussian with a 
momentum + ,iB nμ σ〈 ⋅ 〉  and a width 2 2 2 2/ .T Mε ε+  
 If one uses the following experimental parameters: 
ε = 1 mm, L = 30 cm, B0 = 1 Gauss and atom velocity: 
v ~ 1 cm/s, then momentum shift p momentum spread. 
 As the atom travels after coming out of the interaction 
region, its position will shift, because of the non-zero  
average momentum. Position shift after 30 sec evolution 
after interaction will about 2 cm. 

Conclusion 

We have described protective measurements which are a 
promising tool for probing single systems, i.e. systems 
for which an ensemble of identical quantum states is not 
available. Protective measurements lend a new experi-
mental meaning to the quantum expectation value which, 
traditionally, has meaning only in the context of many  
eigenvalue measurements over an ensemble. Although 
protective measurements can be practically used to meas-
ure the expectation value in a single measurement, the 
non-zero error which is always present, rules out using 
the same to assign any object reality to the wavefunction. 
An experimental test of protective measurements should 
be possible and one proposal for the same has been  
described here. 
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