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Heisenberg’s uncertainty principle was originally posed 
for the limit of the accuracy of simultaneous meas-
urement of non-commuting observables as stating that 
canonically conjugate observables can be measured 
simultaneously only with the constraint that the prod-
uct of their mean errors should be no less than a limit 
set by Planck’s constant. However, Heisenberg with 
the subsequent completion by Kennard has long been 
credited only with a constraint for state preparation 
represented by the product of the standard deviations. 
Here, we show that Heisenberg actually proved the 
constraint for the accuracy of simultaneous measure-
ment, but assuming an obsolete postulate for quantum 
mechanics. This assumption, known as the repeatabil-
ity hypothesis, formulated explicitly by von Neumann 
and Schrödinger, was broadly accepted until the 1970s, 
but abandoned in the 1980s, when completely general 
quantum measurement theory was established. We 
also survey the present author’s recent proposal for a 
universally valid reformulation of Heisenberg’s uncer-
tainty principle under the most general assumption on 
quantum measurement. 
 
Keywords: Error-disturbance relations, quantum root 
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Introduction 

THE uncertainty principle proposed by Heisenberg1 in 
1927 revealed that we cannot determine both position and 
momentum of a particle simultaneously in microscopic 
scale as stating ‘the more precisely the position is deter-
mined, the less precisely the momentum is known, and 
conversely’ (ref. 1, p. 64), and had overturned the deter-
ministic world view based on Newtonian mechanics. Us-
ing the famous γ-ray microscope thought experiment 
Heisenberg1 derived the relation 
 

 ˆ ˆ( ) ( ) ~q p hε ε  (1) 
 

for ˆ( ),qε  the ‘mean error’ of the position measurement, 
and ˆ( ),pε  thereby caused ‘discontinuous change’ of the 

momentum, or more generally the mean error of the  
simultaneous momentum measurement, where h is 
Planck’s constant. 
 

Let ˆ( )qε  [originally, q1] be the precision with which 
the value q is known ˆ( ( )qε  is, say, the mean error of 
q), therefore here the wavelength of the light. Let ˆ( )pε  
[originally, p1] be the precision with which the value p 
is determinable; that is, here, the discontinuous change 
of p in the Compton effect (ref. 1, p. 64). 

 
Heisenberg claimed that this relation is a ‘straightforward 
mathematical consequence’ (ref. 1, p. 65) of fundamental 
postulates for quantum mechanics. In his mathematical 
derivation of eq. (1), he derived 
 

 ˆ ˆ( ) ( )
2

q pσ σ =  (2) 

 
for standard deviations ˆ( )qσ and ˆ( )pσ  of position q̂  and 
momentum p̂  for a class of Gaussian wave functions, 
later known as minimum uncertainty wave packets. Sub-
sequently, Kennard2 proved the inequality 
 

 ˆ ˆ( ) ( )
2

q pσ σ ≥  (3) 

 
for arbitrary wave functions. By this relation, the lower 
bound of eq. (1) was later set as 
 

 ˆ ˆ( ) ( ) ,
2

q pε ε ≥  (4) 

 
where /(2 ).h π=  
 Textbooks3–6 up to the 1960s often explained that the 
physical meaning of Heisenberg’s uncertainty principle is 
expressed by eq. (4), but it is formally expressed by eq. 
(3). This explanation was later considered to be confus-
ing. In fact, it was pointed out that eq. (4) expresses a 
limitation of measurements, while the mathematically  
derived relation eq. (3) expresses a statistical property of 
quantum state, or a limitation of state preparations, so 
that they have different meanings7. Thus, Heisenberg 
with the subsequent completion by Kennard has long 
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been credited only with a constraint for state preparation 
represented by eq. (3). 
 This article aims to resolve this longstanding confu-
sion. It will be shown that in 1927 Heisenberg1 actually 
‘proved’ not only eq. (2) but also eq. (1) from basic  
postulates for quantum mechanics. In showing that, it is 
pointed out that as one of the basic postulates Heisenberg 
supposed an assumption called the ‘repeatability hypo-
thesis’, which is now considered to be obsolete. In  
fact, in the 1930s the repeatability hypothesis was explic-
itly claimed by von Neumann3 and Schrödinger8, whereas 
this hypothesis was abandoned in the 1980s, when quan-
tum measurement theory was established to be general 
enough to treat all the physically realizable measure-
ments. 
 Through those examinations it will be concluded that 
Heisenberg’s uncertainty principle expressed by eq. (4) is 
logically a straightforward consequence of eq. (3) under a 
generalized form of the repeatability hypothesis. In fact, 
under the repeatability hypothesis a measurement is  
required to prepare the state with a sharp value of the 
measured observable, and hence the ‘measuremental’  
uncertainty relation (4), is a logical consequence of the 
‘preparational’ uncertainty relation (3). 
 As stated above, the repeatability hypothesis was aban-
doned in the 1980s, and nowadays eq. (4) is taken to be a 
breakable limit9,10. Naturally, the problem remains: what 
is the unbreakable constraint for simultaneous measure-
ments of non-commuting observables? To answer this 
question, we will survey the present author’s recent pro-
posal for a universally valid reformulation of Heisen-
berg’s uncertainty principle under the most general 
assumption on quantum measurement11–13. 

Repeatability hypothesis 

The uncertainty principle was introduced by Heisenberg 
in a paper entitled ‘Über den anschaulichen Inhalt der 
quantentheoretischen Kinematik und Mechanik’1 published 
in 1927. In what follows we shall examine Heisenberg’s 
derivation of the uncertainty principle following this paper. 
 Before examining the details of Heisenberg’s deriva-
tion, we shall examine the basic postulates for quantum 
mechanics in Heisenberg’s time, following von Neu-
mann’s formulation3. In what follows, a positive operator 
on a Hilbert space with unit trace is called a density op-
erator. We denote by B(R) the set of Borel subsets of R 
and by EA the spectral measure of a self-adjoint operator 
A, i.e. A has the spectral decomposition (d ).AA Eλ λ= ∫R  
 
Axiom 1 (States and observables). Every quantum sys-
tem S is described by a Hilbert space H called the state 
space of S. States of S are represented by density opera-
tors on H and observables of S are represented by self-
adjoint operators on H. 

Axiom 2 (Born statistical formula). If an observable A 
is measured in a state ρ, the outcome obeys the probability 
distribution of A in ρ defined by 
 
 Pr{ || } Tr[ ( ) ],AA Eρ ρ∈ Δ = Δ  (5) 
 
where Δ ∈ B(R). 
 
Axiom 3 (Time evolution). Suppose that a system S is 
an isolated system with the (time-independent) Hamilto-
nian H from time t to t + τ. The system S is in a state ρ(t) 
at time t if and only if S is in the state ρ(t + τ) at time 
t + τ satisfying 
 
 ( ) exp( i / ) ( ) exp( / ).t H t i Hρ τ τ ρ τ+ = −  (6) 
 
Under the above axioms, we can make a probabilistic 
prediction of the result of a future measurement from a 
knowledge about the past state. However, such a predic-
tion applies only to a single measurement in the future. If 
we make many measurements successively, we need an-
other axiom to determine the state after each measure-
ment. For this purpose, the following axiom was broadly 
accepted in the 1930s. 
 
Axiom 4 (Measurement axiom). If an observable A is 
measured in a system S to obtain the outcome a, then the 
system S is left in an eigenstate of A belonging to a. 
 
Von Neuamann3 showed that this is equivalent to the fol-
lowing assumption called the repeatability hypothesis 
(ref. 3, p. 335), posed with a clear operational condition 
generalizing a feature of the Compton–Simons experi-
ment (ref. 3, pp. 212–214). 
 
(R) Repeatability hypothesis. If an observable A is 
measured twice in succession in a system S, then we get 
the same value each time. 
 
It can be seen from the following definition of measure-
ment due to Schrödinger given in his famous ‘cat para-
dox’ paper8 that von Neumann’s repeatability hypothesis 
was broadly accepted in the 1930s. 
 

The systematically arranged interaction of two systems 
(measured object and measuring instrument) is called a 
measurement on the first system, if a directly sensible 
variable feature of the second (pointer position) is  
always reproduced within certain error limits when the 
process is immediately repeated (on the same object, 
which in the meantime must not be exposed to any  
additional influences)8. 

 
Based on the repeatability hypothesis, von Neumann3 
proved the impossibility of simultaneous measurement of 
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two noncommuting observables as follows. Suppose that 
two observables A, B are simultaneously measurable in 
every state and suppose that the eigenvalues of A are non-
degenerate. Then, the state just after the simultaneous 
measurement of A and B is a common eigenstate of A and 
B, so that there is an orthonormal basis consisting of 
common eigenstates of A and B, concluding that A and B 
commute. 
 Since Heisenberg’s uncertainty principle concerns 
measurements with errors, it is naturally expected that it 
can be mathematically derived by extending the above 
argument to approximate measurements. 

Approximate repeatability hypothesis 

To extend the repeatability hypothesis to approximate 
measurements, we generalize the notion of eigenstates as 
follows. For any real number λ and a positive number ε, a 
(vector) state ψ is called an ε-approximate eigenstate be-
longing to λ iff the relation 
 
 || ||Aψ λψ ε− ≤  (7) 
 
holds. If ε = 0, the notion of ε-approximate eigenstates is 
reduced to the ordinary notion of eigenstates. A real 
number λ is called an approximate eigenvalue of an  
observable A iff for every ε > 0 there exists an ε-appro-
ximate eigenstate of A. The set of approximate eigen-
values of an observable A coincides with the spectrum of 
A (ref. 14, p. 52). 
 Now, we formulate the approximate repeatability  
hypothesis as follows. 
 
(AR) Approximate repeatability hypothesis. If an ob-
servable A is measured in a system S with mean error ε 
to obtain the outcome a, then the system S is left in an  
ε-approximate eigenstate of A belonging to a. 
 
Obviously, (AR) is reduced to (R) for ε = 0. Since we 
have 
 
 || || || || ( )A A A Aψ λψ ψ ψ σ− ≥ − 〈 〉 =  
 
for any real number λ, where 〈A〉 = (ψ, Aψ), (AR) implies 
the following statement: If an observable A in a system S 
is measured with mean error ε (A), then the post-
measurement standard deviation σ (A) of A satisfies 
 

 ( ) ( ).A Aσ ε≤  (8) 

Heisenberg’s derivation of the uncertainty  
principle 

Heisenberg’s derivation of eq. (1) starts with considering 
a state ψ just after the measurement of the position  

observable q̂  to obtain the outcome q′ with mean error 
ˆ( )qε  and consider what relation holds between ˆ( )qε  and 
ˆ( )pε  if the momentum observable p̂  has been measured 

simultaneously to obtain the outcome p′ with mean error 
ˆ( ).pε  Then, by (AR) or eq. (8) the state ψ should have 

the position standard deviation ˆ( )qσ  satisfying 
 
 ˆ ˆ( ) ( ).q qσ ε≤  (9) 
 
Heisenberg actually supposed that the state ψ is a Gaus-
sian wave function (ref. 1, p. 69) 
 

 
2

2 1/4 2
1 1

1 ( ) i( ) exp ( ) ,
( ) 2

q qq p q q
q q

ψ
π

⎡ ⎤′− ′ ′= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (10) 

 
which was later known as a minimum uncertainty wave 
packet, with its Fourier transform 
 

 
2

2 1/4 2
1 1

1 ( ) iˆ ( ) exp ( )
( ) 2

p pp q p p
p p

ψ
π

⎡ ⎤′− ′ ′= − + −⎢ ⎥
⎢ ⎥⎣ ⎦

  

  (11) 
 
and he proved eq. (2) for the state ψ given by eq. (10). 
 Exactly this part of Heisenberg’s argument was gener-
alized by Kennard2 to prove eq. (3) for any vector state ψ. 
Thus, Kennard2 relaxed Heisenberg’s assumption on the 
state ψ to the assumption that the state ψ after the posi-
tion measurement can be the arbitrary wave function ψ 
satisfying eq. (9). Then, if the momentum observable p̂  
has been measured simultaneously to obtain the outcome 
p′ with an error ˆ( ),pε  by (AR) or eq. (8) again the state 
ψ should also satisfy the relation 
 
 ˆ ˆ( ) ( ).p pσ ε≤  (12) 
 
Therefore, Heisenberg’s uncertainty relation (4), immedi-
ately follows from Kennard’s relation (3). 
 In 1927, Heisenberg not only derived eq. (1) using the 
γ-ray thought experiment, but also gave its mathematical 
proof. However, he supposed the repeatability hypothesis 
or its approximate version as an additional assumption to 
the standard postulates for quantum mechanics. 
 The approximate repeatability hypothesis (AR) has  
not been explicitly formulated in the literature, but in  
the following explanation on the derivation of the uncer-
tainty principle, von Neumann3 (pp. 238–239) assumed 
(AR): 
 

We are then to show that if Q, P are two canonically 
conjugate quantities, and a system is in a state in which 
the value of Q can be given with the accuracy ε (i.e. by 
a Q measurement with an error range ε), then P can be 
known with no greater accuracy than /(2 ).η ε=  Or: a 
measurement of Q with the accuracy ε must bring about 
an indeterminacy /(2 )η ε=  in the value of P. 
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In the above, it is obviously assumed that a state with the 
position standard deviation ε is resulted by a Q measure-
ment with an error range ε. This assumption is what we 
have generally formulated in eq. (8) as an immediate log-
ical consequence of (AR). 
 Two inequalities (3) and (4), are often distinguished as 
the preparational uncertainty relation and the measure-
mental uncertainty relation respectively. However, under 
the repeatability hypothesis such a distinction is not appar-
ent, since a measurement is required to prepare the state 
with a sharp value of the measured observable. In fact, the 
above argument shows that there exists an immediate logi-
cal relationship between these two inequalities. 

Abandoning the repeatability hypothesis 

The repeatability hypothesis applies only to a restricted 
class of measurements and does not generally character-
ize the state changes caused by quantum measurements. 
In fact, there exist commonly used measurements of dis-
crete observables, such as photon counting, that do not 
satisfy the repeatability hypothesis15. Moreover, it has 
been shown that the repeatability hypothesis cannot be 
generalized to continuous observables in the standard 
formulation of quantum mechanics16–19. In 1970, Davies 
and Lewis20 proposed abandoning the repeatability hy-
pothesis and introduced a new mathematical framework to 
treat all the physically realizable quantum measurements: 
 

One of the crucial notions is that of repeatability which 
we show is implicitly assumed in most of the axiomatic 
treatments of quantum mechanics, but whose abandon-
ment leads to a much more flexible approach to meas-
urement theory (ref. 20, p. 239). 

 
Denote by τc(H) the space of trace class operators on H, 
by I(H) the space of density operators on H, and by 
P(τc(H)) the space of positive linear maps on τc(H). Da-
vies and Lewis20 introduced a mathematical notion of in-
strument as follows. A Davies–Lewis (DL) instrument for 
(a system S described by) a Hilbert space H is defined as 
a P(τc(H))-valued Borel measure I on R countably addi-
tive in the strong operator topology such that I(R) is 
trace-preserving (Tr[I(R)ρ] = Tr[ρ]). 
 Let A(x) be a measuring apparatus for S with the out-
put variable x. The statistical properties of the apparatus 
A(x) are determined by (i) the probability distribution 
Pr{x ∈ Δ||ρ} of the outcome x in an arbitrary state ρ, and 
(ii) the state change ρ → ρ{x∈Δ} from the state ρ just be-
fore the measurement to the state ρ{x∈Δ} just after the 
measurement, given the condition x ∈ Δ. The proposal of 
Davies and Lewis20 can be stated as follows. 
 
(DL) The Davies–Lewis thesis. For every measuring 
apparatus A(x) with output variable x, there exists a 
unique DL instrument I satisfying 

 Pr{ || } Tr[ ( ) ],ρ ρ∈ Δ = Δx I  (13) 
 

 
{ }

( ) .
Tr[ ( ) ]

ρρ ρ
ρ∈Δ

Δ
→ =

Δx

I
I

 (14) 

 
For any Δ ∈ B(R), define Π(Δ) by 
 
 ( ) ( ) 1,*Π Δ = ΔI  (15) 
 
where I(Δ)* is the dual map of I(Δ) given by  
Tr[(I (Δ)*X)ρ] = Tr[X( I (Δ)ρ)] for all X ∈ L(H). Then, 
the map Δ → Π(Δ) is a probability operator-valued meas-
ure (POVM)21, called the POVM of I, satisfying 
 
 Pr{ || } Tr[ ( ) ]ρ ρ∈ Δ = Π Δx  (16) 
 
for all ρ ∈ I(H) and Δ ∈ B(R). 
 The problem of mathematically characterizing all the 
physically realizable quantum measurements is reduced 
to the problem as to which instruments are physically  
realizable13. To settle this problem, standard models of 
measuring processes were introduced by Ozawa16 as fol-
lows. A measuring process for (a system described by) a 
Hilbert space H is defined as a quadruple (K, ρ0, U, M) 
consisting of a Hilbert space H, a density operator ρ0 on 
K, a unitary operator U on H ⊗ K, and a self-adjoint  
operator M on K. A measuring process (K, ρ0, U, M) is 
said to be pure if ρ0 is a pure state, and it is said to be 
separable if K is separable. 
 The measuring process (K, ρ0, U, M) mathematically 
models the following description of a measurement. The 
measurement is carried out by the interaction, referred to 
as the measuring interaction, between the object S and 
the probe P. The probe P is described by the Hilbert 
space K and prepared in the state ρ0 just before the meas-
urement. The time evolution of the composite system 
P + S during the measuring interaction is described by the 
unitary operator U. The outcome of the measurement is 
obtained by measuring the observable M called the meter 
observable of the probe P just after the measuring inter-
action. We assume that the measuring interaction turns on 
at time t = 0 and turns off at time t = Δt. In the Heisen-
berg picture, we write 
 
 †

1 1 2 2 12 12(0) 1, (0) 1 , ( )A A A A A t U A U= ⊗ = ⊗ Δ =  
 
for an observable A1 of S, an observable A2 of P, and an 
observable A12 of S + P. 
 Suppose that the measurement carried out by an appa-
ratus A(x) is described by a measuring process (K, ρ0, 
U, M). Then, it is shown in Ozawa16 that the statistical 
properties of the apparatus A(x) are given by 
 
 ( )

0Pr{ || } Tr[ ( )( )],M tEρ ρ ρΔ∈ Δ = Δ ⊗x  (17) 



SPECIAL SECTION: QUANTUM MEASUREMENTS 
 

CURRENT SCIENCE, VOL. 109, NO. 11, 10 DECEMBER 2015 2010 

 
( )

0
{ } ( )

0

Tr [ ( )( )]
,

Tr[ ( )( )]

M t

M t
E

E
ρ ρ

ρ ρ
ρ ρ

Δ

∈Δ Δ

Δ ⊗
→ =

Δ ⊗
x

K  (18) 

 
where TrK stands for the partial trace on the Hilbert 
space K. The POVM Π of the apparatus A(x) is defined 
by 
 
 ( )

0( ) Tr [ ( )(1 )]M tE ρΔΠ Δ = Δ ⊗K  (19) 
 
for any Δ ∈ B(R). Then, the map Δ → Π(Δ) is a probabil-
ity operator-valued measure (POVM)21 satisfying 
 
 Pr{ || } Tr[ ( ) ]ρ ρ∈ Δ = Π Δx  (20) 
 
for all ρ ∈ L(K) and Δ ∈ B(R). 
 Now it is easy to see that the above description of the 
measurement statistics of the apparatus A(x) is consistent 
with the Davies–Lewis thesis. In fact, the relation 
 
 ( )

0( ) Tr [ ( )( )]M tEρ ρ ρΔΔ = Δ ⊗KI  (21) 
 
defines a DL instrument I. In this case, we say that the 
instrument I is realized by the measuring process (K, ρ0, 
U, M). 
 A DL instrument for H is said to be completely posi-
tive (CP) if I(Δ) is completely positive for every Δ ∈ B 
(R), i.e. I(Δ)⊗idn : τc(H) ⊗ Mn → τc(H) ⊗ Mn is a posi-
tive map for every finite number n, where Mn is the  
matrix algebra of order n and idn is the identity map on 
Mn. The following theorem characterizes the physically 
realizable DL instruments by completely positivity16,22. 
 
Theorem 1 (Realization theorem for CP instruments). 
A DL instrument can be realized by a measuring process 
if and only if it is completely positive. In particular, every 
CP instrument can be realized by a pure measuring proc-
ess, and if H is separable, every CP instrument for H can 
be realized by a pure and separable measuring process. 
 
 Now, we have reached the following general measure-
ment axiom, abandoning Axiom 4 or the repeatability hy-
pothesis. 
 
Axiom 5 (General measurement axiom). To every 
measuring apparatus A(x) with output variable x, there ex-
ists a unique CP instrument I satisfying eqs (13) and (14). 
Conversely, to every instrument I there exists at least one 
measuring apparatus A(x) satisfying eqs (13) and (14). 

von Neumann’s model of position measurement 

Let A and B be observables of a system S described by a 
Hilbert space H. Let A(x) be a measuring apparatus for S 
with the output variable x described by a measuring pro-

cess M = (K, ρ0, U, M) from time t = 0 to t = Δt. An ap-
proximate simultaneous measurement of A(0) and B(0) is 
obtained by direct simultaneous measurement of commut-
ing observables M(Δt) and B(Δt), where M(Δt) is consid-
ered to approximately measure A(0) and B(Δt) is 
considered to approximately measure B(0). In this case 
the error of the B(0) measurement is called the distur-
bance of B caused by the measuring process M, and the 
relation for the errors of the A(0) measurement and the 
B(0) measurement is called the error–disturbance rela-
tion (EDR). In what follows, we examine the EDR for po-
sition measurement error and momentum disturbance. 
 Until the 1980s, only solvable model of position meas-
urement had been given by von Neumann3. We show that 
this longstanding model satisfies Heisenberg’s error–
disturbance relation11, a version of Heisenberg’s uncer-
tainty relation (4). 
 Consider a one-dimensional mass S, called an object, 
with position x̂  and momentum ˆ ,xp  described by a Hil-
bert space H = L2(Rx), where Rx is a copy of the real line. 
The object is coupled from time t = 0 to t = Δt with the 
probe P, another one-dimensional mass with position ŷ  
and momentum ˆ ,yp  described by a Hilbert space 
K = L2(Ry), where Ry is another copy of the real line. The 
outcome of the measurement is obtained by measuring 
the probe position ŷ  at time t = Δt. The total Hamilto-
nian for the object and the probe is taken to be 
 

 ,H H H KH= + +S+P S P  (22) 
 

where HS and HP are the free Hamiltonians of S and P  
respectively, H represents the measuring interaction. The 
coupling constant K satisfies KΔt = 1 and it is so strong 
(K p 1) that HS and HP can be neglected. 
 The measuring interaction H is given by 
 

 ˆ ˆ ,yH x p= ⊗  (23) 
 
so that the unitary operator of the time evolution of S + P 
from t = 0 to t = τ ≤ Δt is given by 
 

 i ˆ ˆ( ) exp .y
KU x pττ −⎛ ⎞= ⊗⎜ ⎟

⎝ ⎠
 (24) 

 
 Suppose that the object S and the probe P are in the 
vector states ψ and ξ respectively, just before the meas-
urement. We assume that the wave functions ψ(x) and 
ξ(y) are Schwartz rapidly decreasing functions23. Then, 
the time evolution of S + P in the time interval (0, Δt) is 
given by the unitary operator U(Δt) = ˆ ˆexp( i / ).yx p− ⊗  
Thus, this measuring process is represented by 

2 ˆ ˆ ˆ( ( ), | |, exp( / ), ).y yL ix p yξ ξ〉〈 − ⊗R  
 The state of the composite system S + P just after the 
measurement is U(Δt)ψ ⊗ ξ. By solving the Schrödinger 
equation, we have 
 
 ( )( )( , ) ( ) ( ).U t x y x y xψ ξ ψ ξΔ ⊗ = −  (25) 
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From this, the probability distribution of output variable x 
is given by 
 

 2 2Pr{ || } d | ( )| | ( )| d .y x y x xψ ψ ξ
Δ

∈ Δ = −∫ ∫
R

x  (26) 

 
By a property of convolution, if the probe probability dis-
tribution |ξ(y)|2 approaches the Dirac delta function δ (y), 
the output probability approaches the Born probability 
distribution |ψ(x)|2. 
 The corresponding instrument I is given by 
 

 †ˆ ˆ( ) ( 1 ) ( 1 ) d ,y x y x yρ ξ ρξ
Δ

Δ = − −∫I  (27) 

 
and the corresponding POVM is given by 
 

 2ˆ( ) | ( 1 )| d ,y x yξ
Δ

Π Δ = −∫  (28) 

 
Solving the Heisenberg equations of motion, we have 
 
 ˆ ˆ( ) (0),x t xΔ =  (29) 
 
 ˆ ˆ ˆ( ) (0) (0),y t x yΔ = +  (30) 
 
 ˆ ˆ ˆ( ) (0) (0),x x yp t p pΔ = −  (31) 
 
 ˆ ˆ( ) (0).y yp t pΔ =  (32) 

Root mean square error and disturbance 

To define the ‘mean error’ of the above position meas-
urement, let us recall classical definitions. Suppose that a 
quantity X = x is measured by directly observing another 
quantity Y = y. For each pair of values (X, Y ) = (x, y), the 
error is defined as y – x. To define the ‘mean error’ given 
the joint probability distribution (JPD) μX,Y(dx, dy) of  
X and Y, Gauss24 introduced the root mean square (rms) 
error εG(X, Y) of Y for X as 
 

 
2

1/2

2 ,( , ) ( ) (d , d ) ,X Y
G X Y y x x yε μ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫ ∫

R

 (33) 

 
which he called the ‘mean error’ or the ‘mean error to be 
feared’, and has long been accepted as a standard defini-
tion for the ‘mean error’. 
 In the von Neumann model, the observable ˆ(0)x  is 
measured by directly observing the meter observable 

ˆ( ).y tΔ  Since ˆ(0)x  and ˆ( )y tΔ  commute by eq. (30), we 
have the JPD ˆ ˆ(0), ( ) (d , d )x y t x yμ Δ of ˆ(0)x  and ˆ( )y tΔ  as 
 
 ˆ ˆ ˆ ˆ(0), ( ) (0) ( )(d , d ) (d ) (d ) ,x y t x y tx y E x E yμ Δ Δ= 〈 〉  (34) 
 
where 〈⋅⋅⋅〉 stands for the mean value in the state ψ ⊗ ξ. 
Then, by eq. (33) the rms error ˆ( , )x yε  for measuring x̂  
in state ψ is defined as the rms error ˆ ˆ( (0),  ( ))G x y tε Δ  of 
ˆ( )y tΔ  for ˆ(0),x  so that we have 

 

 
2

1/2

ˆ ˆ2 (0), ( )ˆ( , ) ( ) (d , d )x y tx y x x yε ψ μ Δ
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫ ∫

R

 

 
     2 1/2 2 1/2ˆ ˆ ˆ( ( ) (0)) (0) .y t x y= 〈 Δ − 〉 = 〈 〉  (35) 
 
Since ˆ (0)xp  and ˆ ( )xp tΔ  also commute from eq. (31), we 
also have the JPD ˆ ˆ(0), ( ) (d , d )x xp p t x yμ Δ  of the values of 
ˆ (0)xp  and ˆ ( ).xp tΔ  The rms disturbance ˆ( , )xpη ψ  of  
ˆ xp  in state ψ is similarly defined as the rms error 

ˆ ˆ( (0), ( )),G x xp pε Δ  so that we have 
 

 
2

1/2

ˆ ˆ(0), ( )2ˆ( , ) ( ) (d , d )x xp p t
xp y x x yη ψ μ Δ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∫ ∫

R

 

 
     2 1/2 2 1/2ˆ ˆ ˆ( ( ) (0)) (0) .x x yp t p p= 〈 Δ − 〉 = 〈 〉  (36) 
 
Then, by Kennard’s inequality (3), we have 
 
 2 1/2 2 1/2ˆ ˆ ˆ ˆ( , ) ( , ) (0) (0)x yx p y pε ψ η ψ = 〈 〉 〈 〉  
 

        ˆ ˆ( (0)) ( (0)) .
2yy pσ σ≥ ≥  (37) 

 
Thus, the von Neumann model satisfies Heisenberg’s  
error–disturbance relation 
 

 ˆ ˆ( ) ( ) ,
2xx pε η ≥  (38) 

 
for ˆ ˆ( ) = ( , )x xε ε ψ  and ˆ ˆ( ) ( , ).x xp pη η ψ=  
 By the limited availability for measurement models up 
to the 1980s, the above result appears to have enforced a 
prevailing belief in Heisenberg’s EDR (eq. (38)), for in-
stance, in claiming the standard quantum limit for gravi-
tational wave detection25–27. 

Measurement violating Heisenberg’s EDR 

In 1980, Braginsky et al.25 claimed that Heisenberg’s 
EDR (eq. (38)) leads to a sensitivity limit called the  
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standard quantum limit (SQL), for gravitational wave  
detectors exploiting free-mass position monitoring. Sub-
sequently, Yuen28 questioned the validity of the SQL, and 
Caves27 defended the SQL by giving a new formulation 
and a new proof without directly appealing to Heisen-
berg’s ERD (eq. (38)). Eventually, the conflict was rec-
onciled29,30 by pointing out that Caves27 still supposed 
(AR), in spite of avoiding Heisenberg’s ERD (eq. (38)). 
More decisively, a solvable model of a precise position 
measurement was also constructed that breaks the 
SQL29,30; later this model was shown to break Heisen-
berg’s EDR (eq. (38))31. 
 In what follows, we examine this model, which modi-
fies the measuring interaction of the von Neumann mod-
el. In this new model, the object, the probe, and the probe 
observable, the coupling constant K, and the time dura-
tion Δt are the same as the von Neumann model. The 
measuring interaction is taken to be29 
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(2 2 1 1 ).
3 3 y x x yH x p p y xp ypπ

= ⊗ − ⊗ + ⊗ − ⊗  (39) 

 
The corresponding instrument is give by13 
 
 ˆ ˆ ˆi i( ) e | |e Tr[ (d ) ],x xxp xp xE xρ φ φ ρ− −

Δ

Δ = 〉〈∫I  (40) 

 
where φ (x) = ξ(−x), and the corresponding POVM is  
given by 
 
 ˆ( ) ( ).qEΠ Δ = Δ  (41) 
 
Solving the Heisenberg equations of motion, we have 
 
 ˆ ˆ ˆ( ) (0) (0),x t x yΔ = −  (42) 
 
 ˆ ˆ( ) (0),y t xΔ =  (43) 
 
 ˆ ˆ( ) (0),x yp t pΔ = −  (44) 
 
 ˆ ˆ ˆ( ) (0) (0).y x yp t p pΔ = +  (45) 
 
Thus, ˆ(0)x  and ˆ( )y tΔ  commute and also ˆ (0)xp  and 
ˆ ( )xp tΔ  commute, so that the rms error and rms distur-

bance are well defined by their JPDs, and given by 
 
 ˆ( , ) 0,xε ψ =  (46) 
 
 2 1/2ˆ ˆ ˆ( , ) ( (0) (0)) .x y xp p pη ψ = 〈 + 〉 < ∞  (47) 
 
Consequently, we have 
 
 ˆ ˆ( ) ( ) 0.xx pε η =  (48) 

Therefore, this model obviously violates Heisenberg’s 
EDR (eq. (38)). 

Universally valid error–disturbance relation 

To derive a universally valid EDR, consider a measuring 
process M = (K, ρ0, U, M). If A(0) and M(Δt) commute, 
the rms error of the measuring process M for measuring 
A in ρ can be defined through the JPD of A(0) and M(Δt). 
Similarly, if B(0) and B(Δt) commute, the rms distur-
bance can also be defined through the JPD of B(0) and 
B(Δt). In order to extend the definitions of the rms error 
and disturbance to the general case, we introduce the 
noise operator and the disturbance operator. 
 The noise operator N(A) is defined as the difference 
M(Dt) – A(0) between the observable A(0) to be measured 
and the meter observable M(Δt) to be read and the distur-
bance operator D(A) is defined as the change B(Δt) − B(0) 
of B caused by the measuring interaction, i.e. 
 

 N(A) = M(Δt) − A(0), (49) 
 

 D(B) = B(Δt) − B(0). (50) 
 
The mean noise operator n(A) and the mean disturbance 
operator d(B) are defined by 
 

 n(A) = TrH [N(A)1 ⊗ ρ0], (51) 
 

 d(B)=TrH [D(B)1 ⊗ ρ0]. (52) 
 
The rms error ε(A, ρ) and the rms disturbance η(B, ρ) for 
observables A, B respectively, in state ρ are defined by 
 

 2 1/2
0( , ) (Tr[ ( ) ]) ,A N Aε ρ ρ ρ= ⊗  (53) 

 

 2 1/2
0( , ) (Tr[ ( ) ]) .B D Bη ρ ρ ρ= ⊗  (54) 

 
An immediate meaning of ( , )Aε ρ  and ( , )Bη ρ  is the 
rms of the noise operator and the rms of the disturbance 
operator respectively. 
 Suppose that M(Δt) and A(0) commute in ρ ⊗ ρ0, i.e. 
 

 (0) ( )
0[ ( ), ( )] 0A M tE E ρ ρΔΔ Γ ⊗ =  (55) 

 
for all Δ, Γ ∈ B(R)32–34. In this case, the relation 
 
 (0), ( ) (0) ( )

0(d , d ) Tr[ (d ) (d ) ]A M t A M tx y E x E yμ ρ ρΔ Δ= ⊗   
  (56) 
 
defines the JPD of A(0) and M(Δt) satisfying 
 
 0Tr[ ( (0), ( )) ]p A M t ρ ρΔ ⊗  
 

  
2

(0), ( )( , ) (d , d )A M tp x y x yμ Δ= ∫ ∫
R

 (57) 
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for any real polynomial p(A(0), M(Δt)) in A(0) and M(Δt)32. 
Thus, the classical rms error εG(A(0), M(Δt)) of M(Δt) for 
A(0) is well defined, and we easily obtain the relation 
 

 ε (A, ρ) = εG(A(0), M(Δt)). (58) 
 
Similarly, we have η (B, ρ) = εG(B(0), B(Δt)) if B(0) and 
B(Δt) commute in ρ ⊗ ρ0. 
 In 2003, the present author11,12,35 derived the relation 
 

1( ) ( ) | [ ( ), ] [ , ( )] | | [ , ] |,
2

A B n A B A d B A Bε η + 〈 〉 + 〈 〉 ≥ 〈 〉  (59) 

 
where ε(A) = ε(A, ρ), η(B) = η(B, ρ), which is universally 
valid for any observables A, B, any system state ρ, and 
any measuring process M. From eq. (59), it is concluded 
that if the error and disturbance are statistically inde-
pendent from system state, then the Heisenberg-type EDR 
 

 1( ) ( ) | [ , ] |
2

A B A Bε η ≥ 〈 〉  (60) 

 
holds, extending the previous results36–39. The additional 
correlation term in eq. (59) allows the error–disturbance 
product ε (A)η(B) to violate the Heisenberg-type EDR 
(eq. (60)). In general, the relation 
 

 1( ) ( ) ( ) ( ) ( ) ( ) | [ , ] |
2

A B A B A B A Bε η ε σ σ η+ + ≥ 〈 〉  (61) 

 
holds for any observables A, B, any system state ρ, and 
any measuring process M11–13,35,40,41. 
 The new relation (61), leads to the following new con-
straints for precise measurement and non-disturbing 
measurements: 
 

 1( ) ( ) | [ , ] |, if ( ) 0,
2

A B A B Aσ η ε≥ 〈 〉 =  (62) 
 

 1( ) ( ) | [ , ] |, if ( ) 0.
2

A B A B Bε σ η≥ 〈 〉 =  (63) 
 
Note that if 〈[A, B]〉 ≠ 0, the Heisenberg-type EDR (eq. 
(60)) leads to the divergence of ε(A) or η(B) in those  
cases. The new error-bound eq. (63) was used to derive 
conservation-law-induced limits for measurements12,42–44 
quantitatively generalizing the Wigner–Araki–Yanase 
theorem45–48 and was used to derive a fundamental accu-
racy limit for quantum computing12. 

Quantum root mean square errors 

We say that the measuring process M is probability  
reproducible for the observable A in the state ρ iff 
 

 ( )
0Tr[ ( ) ] Tr[ ( ) ]M t AE Eρ ρ ρΔ Δ ⊗ = Δ  (64) 

holds for all Δ ∈ B(R). The rms error ε (A, ρ) satisfies 
that ρ (A, ρ) = 0 for all ρ if and only if M is probability 
reproducible for A in all ρ (refs 13, 31). Thus, the condi-
tion that ε (A, ρ) = 0 for all ρ characterizes the class of 
measurements with POVM Π satisfying Π = EA. 
 Busch et al.49 pointed out that there are cases where 
ε(A, ρ) = 0 holds but M is not probability reproducible 
and where M is not probability reproducible but ε (A, ρ) = 0 
holds, and questioned the reliability of the rms error 
ε (A, ρ) as a state-dependent error measure. However, 
their argument lacks a reasonable definition of precise 
measurements, necessary for discussing the reliability of 
error measures. In response to their criticism, the present 
author33,34 has successfully characterized the precise mea-
surements of A in a given state ρ and shown that the rms 
error ε (A, ρ) reliably characterizes such measurements. 
In what follows we survey those results, which have been 
mostly neglected in the recent debates50–52. 
 Let us start with the classical case. Suppose that a 
quantity X = x is measured by direct observation of an-
other quantity Y = y. Then, this measurement is precise 
iff X = Y holds with probability 1, or equivalently the JPD 
μX,Y (dx, dy) of X and Y concentrates on the diagonal set, 
i.e. 
 
 , 2({( , ) | }) 0.X Y x y x yμ ∈ ≠ =R  (65) 
 
As easily seen from eq. (33), this condition is equivalent 
to the condition εG (X, Y) = 0. 
 Generalizing the classical case, we say that a measur-
ing process M makes a strongly precise measurement of 
A in ρ iff A(0) = M(Δt) holds with probability 1 in the 
sense that A(0) and M(Δt) commute in ρ ⊗ ρ0 and that the 
JPD μ A(0),M(Δt) of concentrates on the diagonal set, i.e. 
 
 (0), ( ) 2({( , ) | }) 0.A M t x y x yμ Δ ≠ =R  (66) 
 
On the other hand, we have introduced another opera-
tional requirement. The weak joint distribution 

(0), ( )A M t
Wμ

Δ  of A(0) and M(Δt) in a state ρ is defined by 
 

(0), ( ) (0) ( )
0(d , d ) Tr[ (d ) (d ) ].A M t A M t

W x y E x E yμ ρ ρΔ Δ= ⊗   
  (67) 
 
The weak joint distribution is not necessarily positive but 
operationally accessible by weak measurement and post-
selection53. We say that the measuring process M makes a 
weakly precise measurement of A in ρ iff the weak joint 
distribution (0), ( )A M t

Wμ
Δ  in state ρ concentrates on the dia-

gonal set, i.e. 
 

 (0), ( ) 2({( , ) | }) 0.A M t
W x y x yμ Δ ∈ ≠ =R  (68) 

 
This condition does not require that A(0) and M(Δt) 
commute, while it only requires that the weak joint  
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distribution concentrates on the event A(0) = M(Δt). A 
similar condition has been used to observe momentum 
transfer in a double-slit ‘which-way’ experiment54,55. We 
naturally consider that strong preciseness is a sufficient 
condition for precise measurements and weak preciseness 
is a necessary condition. In the previous studies33,34, it 
was mathematically proved that both conditions are 
equivalent. Thus, either condition is concluded to be a 
necessary and sufficient condition characterizing the unique 
class of precise measurements. As above, we say that the 
measuring process M precisely measures A in ρ iff it 
makes a strongly or weakly precise measurement of A in ρ. 
 To characterize the class of precise measurements in 
terms of the rms error-freeness condition, ε(A, ρ) = 0, 
and the probability reproducibility condition, we intro-
duce the following notions. The cyclic subspace C (A, ρ) 
generated by A and ρ is defined as the closed subspace of 
H generated by {EA(Δ)φ | Δ ∈ B(R), φ ∈ ran(ρ)}, where 
ran(ρ) denotes the range of ρ. Then, the following theo-
rem holds33,34. 
 
Theorem 2. Let M = (K, ρ0, U, M) be a measuring 
process for the system S described by a Hilbert space K. 
Let A be an observable of S and ρ a state of S. Then, the 
following conditions are equivalent. 
 
(i) M precisely measures A in ρ. 
(ii) ε (A, φ) = 0 in all φ ∈ C (A, ρ). 
(iii) M is probability reproducible for A in all φ ∈ 

C (A, ρ). 
 
In the case where A(0) and M(Δt) commute, precise mea-
surements are characterized by the rms error-freeness 
condition, since in this case we have εG(A(0), M(Δt)) = 
ε(A, ρ). However, the probability reproduciblity condi-
tion does not characterize the precise measurements even 
in this case. To see this, suppose that A(0) and M(Δt) are 
identically distributed and independent (ref. 34, p. 763). 
Then, we have 
 

 
2

2 (0) ( )( (0), ( )) ( ) (d ) (d )A M t
G A M t y x x yε μ μ ΔΔ = −∫ ∫

R

 

 
  2 2 2( (0)) ( ( )) ( (0) ( ) ) .A M t A M tσ σ= + Δ + 〈 〉 − Δ 〉  
 
Since σ (A(0)) = σ (M(Δt)) and 〈A(0)〉 = 〈M(Δt)〉, we have 
 
 ( (0), ( )) 2 ( ).G A M t Aε σΔ =  (69) 
 
Thus, M is not a precise measurement for the input state 
ρ with σ (A) ≠ 0. In the case where A(0) and M(Δt) do not 
commute, the rms error-freeness condition well character-
izes precise measurements to a similar extent to the prob-
ability reproducibility condition. In particular, the class 

of measuring processes precisely measuring A in all ρ is 
characterized by the following equivalent conditions33,34: 
(i) ε(A, ψ) = 0 for all ψ ∈ K; (ii) probability reproducible 
for A in all ψ ∈ K; (iii) Π = EA. The above result ensures 
our longstanding belief that a measurement with POVM 
Π satisfying Π = EA is considered to be precise in any 
state in the sense that the measured observable A(0) and 
the meter observable M(Δt) to be directly observed are 
perfectly correlated in any input state, not only reproduc-
ing the probability distribution in any state. 
 We say that the measuring process M does not disturb 
an observable B in a state ρ iff observables B(0) and 
B(Δt) commute in the state ρ ⊗ ρ0 and the JPD 

(0), ( )B B tμ Δ  of B(0) and B(Δt) concentrates on the diagonal 
set. The non-disturbing measuring processes defined 
above can be characterized analogously. 
 From the above results, a non-zero lower bound for 
ε(A) or η(B) indicates impossibility of precise or non-
disturbing measurement. In particular, if σ (A), σ (B) < ∞ 
and 〈[A, B]〉 ≠ 0, then any measuring process cannot  
precisely measure A without disturbing B. 
 The above characterizations of precise and non-
disturbing measurements suggest the following defini-
tions of the locally uniform rms error ( , )Aε ρ  and the 
locally uniform rms disturbance ( , )Bη ρ 56. 
 
 

( , )
( , ) sup ( , ),

A
A A

φ ρ
ε ρ ε φ

∈
=

C
 (70) 

 
 

( , )
( , ) sup ( , ).

B
B B

φ ρ
η ρ η φ

∈
=

C
 (71) 

 
Then, we have ( , ) 0Aε ρ =  if and only if the measure-
ment precisely measures A in ρ, and that ( , ) 0Bη ρ =  if 
and only if the measurement does not disturb B in ρ. For 
those quantities, the Heisenberg-type EDR 
 

 ˆ ˆ( ) ( )
2xx pε η ≥  (72) 

 
is still violated by a linear position measurement56, and 
the relation 
 

 1( ) ( ) ( ) ( ) ( ) ( ) | [ , ] |
2

A B A B A B A Bε η ε σ σ η+ + ≥ 〈 〉  (73) 
 
holds universally56, where ( ) ( , )A Aε ε ρ=  and 

( ) ( , ).B Bη η ρ=  
 Thus, the locally uniform rms error ( , )Aε ρ  com-
pletely characterizes precise measurements of A in ρ and 
the locally uniform rms disturbance ( , )Bη ρ  completely 
characterizes measurements non-disturbing B in ρ, while 
they satisfy the EDR of the same form as the rms error 
and disturbance. Further investigations on quantum gen-
eralizations of the classical notion of rms error and EDRs 
formulated with those quantities will be reported else-
where. 
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