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Compact polarimetry has gained popularity due to its 
advantages, such as larger swath, simple architecture 
and low power consumption. The backscattered signal 
and scattering decomposition vary for different targets 
based on their electrical, geometrical and structural 
properties. As of now, the potential of hybrid polarimet-
ric synthetic aperture radar (SAR) data for exploring 
Antarctic ice features is not fully explored. Here, we 
present a comprehensive polarimetric feature analysis 
and classification results of the hybrid polarimetric data-
set acquired by RISAT-1 near the Indian Antarctic re-
search station Maitri. The single-look complex images 
have been subjected to polarimetric data processing for 
extracting Antarctic ice features using POLSARPRO 
software. The polarimetric coherence matrix is generated 
and then filtered to eliminate speckles. Raney m–χ de-
composition technique has been utilized to understand 
the scattering mechanism of the targets. The decomposed 
RGB image is classified using Wishart-supervised clas-
sification, and classification accuracy is assessed using 
a confusion matrix. It is found that the comparatively 
simple hybrid polarimetric SAR provides sufficient in-
formation to detect and discriminate various Antarctic 
ice features. Features such as rifts, ice–rises, ice shelves 
and icebergs are clearly discriminated using Wishart-
supervised classification. It is also found that the overall 
accuracy of the classification of study areas varies bet-
ween 80% and 97%, suggesting a good classification 
outcome. 
 
Keywords: Classification accuracy, confusion matrix, hy-
brid polarimetry, ice features, m–χ decomposition, synthetic 
aperture radar data. 
 
REMOTE sensing plays a vital role in monitoring various ice 
features, especially in polar regions where hostile climatic 
conditions and remoteness limit the availability of in situ 
data1,2. Microwave remote sensing is preferred over optical 
remote sensing for monitoring Antarctic ice features be-
cause it provides all-time and all-weather imaging capa-
bilities and is independent of sun illumination conditions. 
Synthetic aperture radar (SAR), with its unique sensitivity 
to the geometrical, structural and electrical properties of 

the target, is an important tool for retrieving various ice 
features. Electromagnetic pulses from SAR interact differ-
ently with different types of ice depending upon feature 
characteristics such as surface roughness and dielectric con-
stant, in addition to system characteristics such as wave-
length and polarization. An important approach to feature 
extraction is the decomposition of data into a single (odd)-
bounce scattering, double (even)-bounce scattering and 
volume scattering. 
 There are only limited studies on the identification of 
polar ice features using polarimetric data. Denbina and Col-
lins3 utilized compact polarimetry data for iceberg detection 
and proved that for higher incidence angles, the performance 
of compact polarimetry detectors is better than any dual-
polarimetric detector, and it is comparable to quadrature 
polarimetric detectors. Dabboor and Geldsetzer4 examined 
the potential of the compact polarimetry SAR system in 
the RADARSAT Constellation Mission satellites for sea-ice 
classification. Dabboor et al.5 concluded that compact polar-
imetry SAR data from high-resolution SAR mode is prom-
ising for classifying first-year ice and multi-year ice in 
winter dry-ice conditions. 
 India has developed an agile spacecraft, viz. Radar Im-
aging Satellite-1 (RISAT-1), featuring a multi-mode and 
multi-polarization SAR system operating in the C-band 
(5.35 GHz)6. It provided spatial resolution in the range of 
1–50 m and a swath ranging from 10 to 225 km and was 
launched on 26 April 2012 (ref. 6). RISAT-1 SAR operates 
in the hybrid polarimetry mode, where the signal is trans-
mitted in circular polarization, and the backscattered signal is 
received simultaneously in H and V polarizations (RH and 
RV). In the present study, we demonstrate the potential of 
hybrid polarimetric SAR data near India Bay in Antarctica, 
acquired by RISAT-1, to extract Antarctic ice features by 
decomposing the SAR data into different scattering mech-
anisms and then classify the Antarctic ice features. 

Study area and data used 

RISAT-1 SAR has five different modes; the Fine Resolution 
Stripmap-1 (FRS-1) mode with 2.25 m spatial resolution 
and 25 km swath have been used in the present study. The 
study area covers the Indian Antarctic Research Station 
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Figure 1. a, MODIS image of the coastal region covering Indian Antarctic Research Station Maitri and the surroundings. b, Selected 
study areas 1–4 over India Bay (Maitri coast) acquired by RISAT-1 FRS-1 (RH-polarization). 

 
 

 
 

Figure 2. Flowchart of polarimetric SAR data processing. 
 
 
Maitri (70°45′53″S, 11°44′03″E) located at Schirmacher 
Oasis and its surroundings on central Queen Maud Land 
in Antarctica. In the present study, four scenes have been 
selected for Antarctic ice-feature identification. Images of 
study areas 1 and 2 were acquired on 6 February 2015, with 
an incidence angle 34°. Images of study areas 3 and 4 were 
acquired on 2 March 2015 having an incidence angle 26°. 
 Figure 1 a shows the MODIS image of the coastal region 
covering Indian Antarctic Research Station Maitri and the 

surroundings (https://nsidc.org/data/iceshelves_images/cgi- 
bin/modis_iceshelf_archive.pl). Figure 1 b shows zoomed 
images of study areas 1–4 acquired on 2 March 2015 by 
RISAT-1. These study areas include different Antarctic 
ice features such as ice shelf, fast ice, ice rise, sea ice, water 
bodies, nilas, rifts, pancake ice, ice floe and iceberg. 

Methodology 

The downloaded single look complex (SLC) images in right-
hand circular transmit and horizontal receive (RH) and 
Right-hand circular transmit and vertical receive (RV) were 
converted into a covariance matrix and subjected to multi-
looking to reduce the slant range distortion. Using a refined 
Lee speckle filtering technique, noises were removed. Raney 
m–χ decomposition technique was applied, and RGB im-
ages based on odd, even and volume scattering of all four 
study areas were obtained. These RGB images were classi-
fied using the Wishart supervised classification technique. 
The classification accuracy of each image was evaluated 
using confusion matrices. The polarimetric data processing 
was carried out using POLSAR PRO V5.0.4 software. 
Figure 2 is a flowchart for hybrid polarimetric SAR data 
processing. Detailed concepts of hybrid polarimetric SAR 
data processing are discussed in the following sections. 

Conversion of SLC data to covariance matrix 

The RISAT-1 SLC images acquired in FRS-1 mode have 
been described in the form of the polarization state of an 
electromagnetic wave using amplitudes of ERH and ERV 
and the relative phase between them. According to Boerner7, 

https://nsidc.org/data/iceshelves_images/cgi-bin/modis_iceshelf_archive.pl
https://nsidc.org/data/iceshelves_images/cgi-bin/modis_iceshelf_archive.pl
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the polarization state of a partially polarized wave in terms of 
2 × 2 complex Hermitian positive semi-definite wave co-
variance matrix [C] for RH and RV polarization can be 
expressed as follows 
 

 RH RH RH RV†

RV RH RV RV

* *
[ ] ,

* *

E E E E
C EE

E E E E

 〈 〉 〈 〉 = 〈 〉 =
 〈 〉 〈 〉 

 (1) 

 
where E is the electric field (in the subscripted polarization), 
* denotes complex conjugate, † denotes complex conjugate 
transpose and 〈…〉 indicates ensemble averaging (multi-
looking in the context of SAR). To deal with a partially 
polarized wave, it is easier to use Stokes parameters as 
they describe partially polarized waves by their observable 
power terms instead of their phases and amplitudes8. The 
Stokes parameters for hybrid architecture can be expressed 
as follows9 
 
 2 2

0 RH RV| | | | ,g E E= 〈 〉 + 〈 〉   
 
 2 2

1 RH RV| | | | ,g E E= 〈 〉 − 〈 〉   
 

 2 RH RV
*2Re( ),g E E=   

 

 3 RH RV
*2 Im( ).g E E= −  (2) 

 
For a completely polarized signal10,11 
 
 2 2 2 2

0 1 2 3 .g g g g= + +  (3) 
 
These Stokes parameters provide valuable information 
about the geophysical properties of the feature. 

Multi-looking approach 

The SAR data were generated in slant range geometry and 
must be projected into the ground range plane. Due to slant 
range distortion, earth objects in the near range appear 
more compressed than objects in the far range. Therefore, 
a multi-looking approach was used to convert the slant 
range into the ground range. For this, pixel spacing in the 
ground range was calculated by dividing pixel spacing in 
the slant range by the sine of the look angle (1.80 m and 
260 respectively, for areas 3 and 4), which was 4.11 m. 
The multi-looking factor was obtained by comparing pixel 
spacing in the ground range with that in the azimuth range 
of 2.34 m. Here, two looks in the azimuth direction and 
one look in the range direction were considered to obtain 
square pixels. For study areas 1 and 2, the ground range 
evaluated was 3.21 m (pixel spacing 1.80 m and look angle 
34°). Hence three looks in the azimuth direction and two 

looks in the range direction were considered to obtain 
square pixels. 

Speckle filtering 

The speckle in SAR images affects the correlation structure 
between the channels and the complex, cross-product terms 
of the covariance matrix. The refined Lee filter algorithm 
uses an edge-aligned window and applies local statistics to 
better preserve edges and spatial resolution details12. So, in 
the present study, a refined Lee filter was used for speckle 
removal of RISAT SAR images. This is an adaptive filter 
based on the estimation of the local variance statistics, and 
the filtering weights are determined using the span image. 
The filter does not use the standard square filtering window 
but an edge-aligned window to preserve edges and detailed 
features13. The edge direction was realized with the help 
of an edge mask using the sub-means of 3 × 3 sub-windows, 
which reduced the effect of noise in the edge direction and 
enhanced the weight of pixels within the proximity of the 
centre pixel. After filtering, each element of the covariance 
matrix C was decomposed using the m–χ decomposition 
method. 

The m–χ decomposition technique 

Raney et al.14 proposed the m–χ decomposition technique 
for analysis of the hybrid polarimetric SAR data using Stokes 
classical and child parameters. The m–χ decomposition is 
achieved using three inputs: Stokes parameter g0, degree 
of polarization (m) and ellipticity parameter (χ). The m–χ 
decomposition method facilitates the interpretation of fea-
tures according to single-bounce, double-bounce and ran-
domly polarized backscatter14. The decomposed elements 
can be represented in terms of double-bounce (dihedral re-
flectors), single-bounce (Bragg scattering) and volume com-
ponent (a randomly polarized constituent) in the following 
form. 
 

 0
1 sin(2 )Double bounce  ×  × ,

2
R g m χ+
= =  

 
 0Volume component  × (1 ),G g m= = −   
 

 0
1 sin(2 )Single bounce  ×  × .

2
B g m χ−
= =   (4) 

 
Total power 2 2 2

0 .g R C B= + +   
 Based on this m–χ decomposition, an RGB colour compo-
site was generated with R, G and B corresponding to even 
bounce scattering, volume scattering and odd bounce scatter-
ing respectively. The RGB colour composite of the decom-
posed image clearly suggests the scattering mechanisms 
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from different ice features. The intensity of each colour is 
given by the relative contribution of the scattering compo-
nents. Black appearance in RGB indicates no backscattered 
energy, suggesting specular reflection from smooth surfaces 
such as water bodies. White patches in RGB indicate a 
combination of all three types of scattering, as in the case 
of icebergs. The secondary colours (cyan, magenta and 
yellow) represent a mix of scattering patterns. For example, 
magenta is a combination of double bounce and surface 
scattering. 

Classification 

In the present study, the decomposed hybrid polarimetric 
data (RGB image) were subjected to the Wishart supervised 
classification. Twelve distinct features, viz. ice shelf, snow-
free ice shelf, fast ice, ice rise, rift, water bodies, sea ice 1 
(smooth) and sea ice 2 (rough), nilas, pancake ice, ice floe 
and iceberg in the SAR images known with reasonable 
certainty based on experience gained by the scientific expedi-
tion were selected as training areas. The graphic interface 
application of PolSARpro software was used for defining 
training areas by visual interpretation of the images to be 
classified. The area of interest was selected from the m–χ 
decomposed RGB image. Using the Wishart statistics, the 
classifier learns from the user-defined training areas, and 
then the entire dataset is classified by assigning each pixel 
to the closest class using the maximum likelihood decision 
rule. The classification algorithm produces two different 
outputs; the classified image in .bmp format and the con-
fusion matrix in .txt format. 

Confusion matrix 

The performance of the Wishart supervised classification 
was assessed using the confusion matrix computed by a 
set of sample data. The confusion matrix is a table that shows 
the correspondence between the classification result and a 
reference image. In the confusion matrix, rows represent 
the user-defined clusters (training class), and the columns 
represent the segmented clusters (classified or predicted 
class). The values at the ijth position in the matrix represent 
the percentage of pixels belonging to the user-defined area 
i assigned to cluster j during the Wishart supervised classifi-
cation. Therefore, rows add up to 100%. The confusion 
matrix of an ideal, error-free classification should be diago-
nal, and the average of the diagonal gives the overall accuracy 
of classification. The off-diagonal elements in a confusion 
matrix represent misclassified pixels or classification errors. 

Results and discussion 

Figures 3–6 display the classified images of study areas 
1–4 respectively, along with the original image and RGB 

of the m–χ decomposed image. The regions where single 
bounce, double bounce and volume scattering dominate 
are marked in Figures 3 b–6 b with blue, red and green boxes 
respectively. Major part of study area-1 (Figure 3) is covered 
by sea ice. The decomposed RGB image (Figure 3 b) clearly 
suggests that the sea-ice part is characterized by a combi-
nation of single and double bounce scattering. The top left 
part of the image is dominated by single surface scattering, 
while the top middle part shows nearly the same contribu-
tion by surface scattering and double bounce scattering. 
Sea ice-2 shows a higher double bounce compared to sea 
ice 1. This could be attributed to the fact that sea ice-1 is wet 
and smooth, giving rise to single scattering, whereas sea 
ice-2 is relatively thicker and rough compared to sea ice-1 
and hence provide a higher double bounce signature. 
 Sea ice in area-2 (Figure 4 b) shows a darker appearance, 
suggesting that the surface is smoother and backscattered 
power is comparatively low. The absence of volume scatter-
ing clearly suggests that the sea ice in areas 1 and 2 is at 
its initial stage of formation. 
 Ice shelves were present in all the study areas. They con-
sist of freshwater ice. Microwave radiation penetrates them, 
and volume scattering occurs due to multiple internal re-
flections from air bubbles, fractures and dust layers. Since 
ice shelves are thick in relation to radar wavelength, there 
may not be any return from the lower boundary between 
ice mass and water. A combination of predominantly vol-
ume scattering along with double-bounce scattering due to 
continuous accumulation of snow firns occurred over areas 1, 
3 and 4. The left side of area 3 suggests the dominance of 
double-bounce scattering, suggesting the presence of more 
firns. In case of ice shelf over area 2, in addition to volume 
and double scattering, surface Bragg scattering due to sur-
face roughness also contributed to backscattering. In case 
of ice shelf free from snow over areas 1 and 2, surface 
scattering and volume scattering mainly contributed to the 
backscattered power. 
 Since the structure of ice rises is similar to the ice shelf, 
the ice rises present in areas 2, 3 and 4 show similar charac-
teristics of the ice shelf in decomposed images. The domi-
nance of double and volume scattering over the surface 
Bragg scattering was observed over ice rises in areas 3 and 4. 
The boundary between ice rise and ice shelf was clearly 
visible in the decomposed image due to stronger double-
bounce scattering caused by corner reflection along with 
volume scattering. Fast ice was present in all images. Fast 
ice at the top right part of area 3 and bottom right part of 
area 4 was clearly characterized by surface Bragg scattering, 
while for that in area 2, an additional small contribution 
by double-bounce scattering also occurred. 
 Over smooth water bodies, specular reflection causes 
less backscattering, resulting in a dark tone in the decom-
posed images (areas 1 and 2). Over the water bodies where 
nilas had developed (area 1), the presence of frost flowers 
or ice surface disturbed by rafting resulted in a combina-
tion of double-bounce scattering and surface scattering. 
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Figure 3. Study area-1: a, Original SAR scene. b, RGB of m–χ decomposed image. c, Classified image. 
 

 
 

Figure 4. Study area-2: a, Original SAR scene. b, RGB of m–χ decomposed image. c, Classified image. 
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Figure 5. Study area-3: a, Original SAR scene. b, RGB of m–χ decomposed image. c, Cassified image. 
 

 
Figure 6. Study area-4: a, Original SAR scene. b, RGB of m–χ decomposed image. c, Classified image. 
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Table 1. Confusion matrix for study area-1 

 Predicted (classified) data 
 

 
User defined (training) data 

 
Ice shelf 

 
Rift 

 
Nilas 

 
Fast ice 

Snow-free 
ice shelf 

 
Water 

 
Iceberg 

 
Pancake ice 

 
Ice floe 

 
Sea ice 1 

 
Sea ice 2 

 

Ice shelf 92.94 0 0 0 0.19 0 6.87 0 0 0 0 
Rift 0.15 99.85 0 0 0 0 0 0 0 0 0 
Nilas 0 0 99.03 0.03 0 0.18 0 0 0.22 0.54 0 
Fast ice 0 0.03 0 5.44 5.94 0 0.72 1.42 5.12 1.34 0 
Snow-free ice shelf 1.12 0 0 0.97 49.91 0.23 26.87 13.85 4.12 1.24 1.70 
Water 0 0 0.11 0 0 98.86 0 0 0 1.04 0 
Iceberg 4.81 0.23 0 0.69 1.26 0 87.77 1.34 2.71 1.18 0 
Pancake ice 0.69 0 0 1.31 15.70 0.09 12.06 49.93 16.37 1.11 2.75 
Ice floe 0 0 1.44 2.40 2.09 0.21 0.56 9.70 48.73 21.05 3.82 
Sea ice 1 0 0 0.03 0.02 0 0.09 0 0 1.88 97.77 0.21 
Sea ice 2 0 0 0.21 0.01 0.04 0.01 0.05 1.62 16.45 8.35 73.26 

 
 

Table 2. Confusion matrix for study area-2 

 Predicted (classified) data 
 

User defined (training) data Ice shelf Snow-free ice shelf Fast ice Ice rise Rift Water Sea ice 1 
 

Ice shelf 96.07 0.04 3.88 0 0 0 0.01 
Snow-free ice shelf 1.08 76.9 0.19 3.85 0.35 0 17.63 
Fast ice 19.06 1.10 79.7 0 0 0 0.14 
Ice rise 0 3.34 0 96.6 0 0 0.06 
Rift 0 0 0.02 0 98.9 1.08 0 
Water 0 0 0 0 0 100 0 
Sea ice 1 0 8.93 0.88 0 0 0 90.19 

 
 
 Rifts were characterized by double-bounce scattering by 
dihedral structure at the rift wall and the surface with volume 
scattering. Heterogeneous combinations of single-bounce 
scattering, double-bounce scattering and volume scatter-
ing were observed over pancake ice and ice floe over area 
1. Icebergs could be easily identified in the m–χ decom-
posed image as bright point targets with intensities much 
above that of the dark background of the ocean due to 
double-bounce scattering from natural dihedrals on ice-
bergs along with surface scattering and volume scattering. 
 Figures 3 c, 4 c, 5 c and 6 c show classified images of 
study areas 1, 2, 3 and 4 respectively, based on the Wishart 
supervised classification technique. The study areas were 
classified into 12 distinct groups, viz. ice shelf, snow-free 
ice shelf, fast ice, ice rise, rift, water bodies, sea ice 1 
(smooth) and sea ice 2 (rough), nilas, pancake ice, ice floe 
and iceberg. Each class was discriminated by unique col-
ours. Quantitative assessment of the classification accuracy 
of all images was done using confusion matrices (Tables 
1–4). 
 As seen in Figure 3 c, area-1 consists of 11 different clas-
ses. In the classified image, features like water body, rift, 
nilas, sea ice 1, ice shelf and icebergs are clearly discrimi-
nated. Snow-free ice shelf is not clearly discriminated in 
the decomposed image but is separated in the classified 
images. The confusion matrix also suggests that features 
such as water body, rift, nilas and sea ice-1 are well discrimi-

nated with class accuracy of more than 97% (Table 1). 
Both the image as well as confusion matrix suggest that 
features such as pancake ice, ice floe and snow-free ice 
shelf are not clearly discriminated. More than 50% of the 
pixels of pancake ice, ice floe and snow-free ice shelf are 
classified as other groups. The overall classification accu-
racy of area-1 is found to be 80.3%. 
 Study area-2 is classified into seven features: ice shelf, 
sea ice, fast ice, rift, snow-free ice shelf, water, and ice rise 
(Figure 4 c). The decomposed image shows similar char-
acteristics between ice shelf and ice rise, but the classified 
image clearly distinguishes between them. Similarly, rifts 
are not clearly distinguishable from the boundary between 
the ice shelf and ice rise in the decomposed image, but the 
classified image shows a clear distinction. Snow-free ice 
shelf is clearly separated from the ice shelf. Water body, sea 
ice and fast ice, are well discriminated. The overall classi-
fication accuracy of area-2 is 91.2%. Features like water 
body, rift, ice rise and ice shelf have been precisely classi-
fied with an accuracy of more than 96%. 
 Study area-3 is classified into four groups, viz. ice shelf, 
ice rise, sea ice and rifts (Figure 5). In this area, all features 
are well separated. The overall classification accuracy of 
this scene is 97.3%. Class accuracy of fast ice, rift and ice 
rise is more than 96%. Area-4 has been classified into five 
classes, viz. ice shelf, water, rift, fast ice and ice rise. The 
overall classification accuracy of this scene is 95.3%. Water, 
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Table 3. Confusion matrix for study area-3 

 Predicted (classified) data 
 

User defined (training) data Ice shelf Ice rise Fast ice Rift 
 

Ice shelf 93.16 6.84 0 0 
Ice rise 3.74 96.26 0 0 
Fast ice 0 0 100 0 
Rift 0.40 0 0 99.60 

 
 

Table 4. Confusion matrix for study area-4 

 Predicted (classified) data 
 

User defined (training) data Ice shelf Ice rise Fast ice Rift Water 
 

Ice shelf 91.96 8.04 0 0 0 
Ice rise 12.23 87.77 0 0 0 
Fast ice 0 0 99.69 0.31 0 
Rift 0 0 2.09 97.08 0.83 
Water 0.16 0 0 0 99.84 

 
 
fast ice and rift have a class accuracy of more than 97%. 
The confusion matrix shows that ice rise and ice shelf get 
merged with each other. The most conspicuous feature of 
these images is the clear identification of a rift on the ice 
shelf. Comparison of decomposed RGB images and the 
corresponding classified images show good matching, and 
most of the features are well discriminated. Among the 12 
classified features, water, rift and nilas have excellent accu-
racy of more than 97%. Sea-ice features like pancake ice 
and ice floe are inefficiently classified. Overall classification 
accuracy of all four study areas is comparatively good: 
above 90%. Study area-3, which has only four classes, shows 
the best overall classification accuracy of more than 97% 
and study area-1 with 11 classes shows comparatively low 
overall accuracy (80%). In comparison with the decom-
posed images, features such as snow-free ice shelf and 
rifts are well discriminated, and the boundary between the 
ice shelf and ice rise becomes clear. 

Conclusion 

In this study, we have examined the capability of hybrid 
polarimetric data retrieved from RISAT-1 of ISRO to un-
derstand the scattering response of various Antarctic ice 
features. The m–χ decomposition technique based on Stokes 
parameters has been used to separate the backscattered 
signal into surface, volume and double-bounce components 
which are useful indicators of the physical properties of 
Antarctic surface features. Polarimetric SAR data analysis 
has shown the potential for discriminating various ice fea-
tures such as ice shelf, fast ice, water, sea ice, rift, nilas, 
snow-free ice shelf and icebergs over Antarctica. The decom-
posed RGB images are classified based on Wishart classi-
fier, and the overall classification accuracy of the study 
areas varies between 80% and 97%, suggesting a satisfactory 
classification. Thus, from this study, it can be concluded 

that the hybrid polarimetric SAR data from RISAT-1 pro-
vide sufficient information about scattering mechanisms, 
which helps in extracting various Antarctic ice features. 
The overall accuracy of classification can be improved by 
a sound knowledge of the ground-truth information. Future 
studies may consider other features of Antarctica, possibly 
with simultaneous in situ data for validation. 
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