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Integrated farming system (IFS) approach is a powerful 
tool for ensuring the livelihood security of small and mar-
ginal farmers. The precision of IFS experiments can be 
enhanced using statistical and computational tools. Two-
part designs are helpful in selecting the best possible 
components in IFS. They involve two groups of treatment 
arranged in incomplete blocks with respect to both 
groups, and the concurrence of treatment pairs within 
and between groups is constant. The fusion of two in-
complete block designs in a systematic manner can yield 
two-part designs. Further, for situations where certain 
experimental units are not available, two-part structurally 
incomplete designs are proposed.  
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THE Indian rural population mainly consists of small and 

marginal farmers dependent on agriculture and its allied 

sectors for their livelihood. Though the contribution of agri-

culture to the Gross Domestic Product (GDP) has decreased 

post-independence, it has made the country self sufficient 

in food and made it a net exporter of agriculture and allied 

products. The ever-growing population, as well as globaliza-

tion effects in India, demand increased quantity and better 

quality of food along with an increase in income. Therefore, 

pressure on diminishing available cultivable land to produce 

more quantity and quality of food keeps increasing.  

 Integrated farming system (IFS) is considered a powerful 

tool and is key to ensuring income, employment, livelihood 

and nutritional security for small and marginal farmers. It 

meets the above goals through multiple uses of available re-

sources, thus giving scope for year-round income from various 

enterprises of the system. Improving the farming system 

through experimentation to attain household-level self-

sufficiency, land utilization efficiency, and sustainable 

livelihood security is the major need of the hour. A sustai-

nable livelihood security index of improved IFS compared 

with benchmark farming is available for semiarid regions1.  

 Often, it may not be possible to adopt all the components 

of IFS available in a particular location due to manage-

ment issues pertaining to resources and proper land utiliza-

tion. Besides the compulsory components like location-

specific dominant crops and dairy, various possible com-

ponents, viz. poultry, piggery, goatery, fishery, apiculture, 

horticulture and sericulture, can be included in IFS to maxi-

mize the overall profit of the farmers. So, it is pivotal to 

identify and adopt appropriate statistical techniques for 

choosing the best combination of components (along with 

crops and dairy) based on the availability of resources in 

order to generate optimum income for the farmers. The 

supplementary material (Figure 1 of Appendix 1) explains 

the steps for selecting the best combination of components 

to ensure sustainable livelihood security for small and mar-

ginal farmers. 

 Designing an experiment is inevitable in almost every 

agricultural and other scientific research. A properly desig-

ned experiment enhances the efficient use of available re-

sources. Implementing experimental designs in farming 

systems can improve their outcomes. Likewise, in IFS, de-

signs can be used to find the best combination of components 

available to obtain maximum profit. 

 Incomplete block designs (IBDs) have been established 

as an important benchmark for obtaining useful information 

from planned scientific experiments with high precision 

utilizing fewer resources. Some important classes of these 

designs include balanced incomplete block (BIB) designs2 

and partially balanced incomplete block (PBIB) designs3. 

The concept of association schemes was introduced to 

study these designs, and the schemes were classified into 

two associate classes4. The two associate-class PBIB designs 

were tabulated in the range r, k  10, where r and k are the 

number of replications and block size respectively5. If the 

experimenter is constrained by resources, PBIB designs 

with three associate classes serve as an alternative to BIB 

designs or two-associate-class PBIB designs. Several asso-

ciation schemes have been defined for designs with three 

associate classes6–11.  

 Amalgamation of two (or more) IBDs, viz. BIB designs, 

PBIB designs or t-designs may help obtain higher dimen-

sional designs, thus facilitating dealing with more complex 

problems. Method for constructing row–column designs 

(RCDs) was introduced earlier12, but the method involved 

complexity. This complex algorithm had been generalized13 

and an R package14 was developed to ease the construction 
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procedure. Sometimes more than one treatment must be 

applied to an experimental unit in order to identify the 

best treatment combination.  

 There may be situations where certain experimental units 

are not available for the application of treatments. In such 

cases, where the use of complete RCDs may not be feasible, 

two-part structurally incomplete RCDs (SIRCDs) may prove 

advantageous. Saharay15 studied SIRCDs, where treatments 

were allotted only to some row–column interactions. Some-

times, due to unavoidable constraints, we may have to allot 

the same treatment to either rows or columns, thereby mak-

ing one of the blocking factors ineffective. This gives rise 

to two-part SI block designs, which form a particular case 

of the two-part SIRCDs.  

 Trial designs were introduced to streamline drug develop-

ment in rare diseases16. Two-part balanced incomplete 

block designs or two-part 2 designs for cancer trials with only 

a limited number of cancer types and a limited number of 

drugs have been discussed17. The concept of basket trials18, 

where several different drugs are tested on various diseases 

in a single protocol, had been considered in the above-

mentioned studies.  

 Here, we develop two-part SI block designs and two-part 

SIRCDs for identifying the best components of IFS. We 

present some experimental situations and define two-part 

SIRCDs and two-part SI block designs. 

Experimental conditions 

Let us consider an IFS research trial where the aim is to 

find out the best farming system at a given location. Besides 

the compulsory components, field crops and dairy in all 

the systems, there are others like poultry, piggery, apiculture, 

goatery and fishery. The aim is to find the best combina-

tion that will yield maximum profit. 
5
2( )  Combinations were 

allotted to ten households in each of the locations. Every 

location may not have resources for every combination. 

Here, the comparison of household groups is not of interest, 

so locations can be treated as blocks and a design can be 

developed for such a situation. 

 Further, if we consider farmers (grouped based on their 

economic status) in place of household groups, it will add 

to another source of variation. For such a situation, an 

RCD can be developed.  

 Units occurring at certain row–column intersections may 

not be available for the experiment and hence do not receive 

any treatment; such a design is structurally incomplete. 

Materials and methods 

Preliminaries 

We define two IBDs, viz. design 1 (ð1) and design 2 (ð2) with 

parameters v1, b1, r1, k1 and v2, b2, r2, k2 respectively, 

where v1 and v2 are the number of treatments in ð1 and ð2 

respectively. Each treatment in ð1 and ð2 is replicated r1 

and r2 times respectively. b1 is the number of blocks in ð1, 

each of size k1 and b2 is the number of blocks in ð2, each 

of size k2. Fusion of these IBDs may result in more com-

plicated two-part SIRCDs or two-part SI block designs for 

testing a set of treatment combinations.  

Some definitions 

Two-part block designs: A two-part block design can be 

defined on v treatment combinations arranged in b blocks 

of size k (<v) such that: 
 

  Each treatment combination appears in each block at 

most once. 

  All blocks contain the same number (r1) of treatment 

combinations. 

  Every component in the combinations must appear in 

each block equally frequently. 
 

Two-part RCDs: A two-part RCD (constructed using ð1 

and ð2) can be defined on v treatment combinations with p 

rows and q columns such that:  

 

  Each treatment combination appears in each row at 

most once. 

  All treatment combinations appear in each column 

equally frequently. 

  All rows involve the same number (k1) of treatment 

combinations (k1 < v1). 

  All columns contain the same number (r1) of treatment 

combinations,  

  Every component in the combinations of size k2 from 

v2 (k2 < v2) treatments must appear in each column 

equally frequently. 

 

Note: Two-part RCDs and block designs are considered 

SI, if at least one experimental unit in the design does not 

receive any treatment combination.  

Model and experimental set-up 

The model for a two-part block design for v treatments, b 

blocks each of size k and each treatment being replicated r 

times is as follows: 

 

 1 2 .     1 D Dy     (1) 

 

where y is the n  1 vector of observations,  the general 

mean, 1 the n  1 vector of ones, 1D  the n  v design matrix 

of observations versus treatments,  the v  1 vector of 

treatment effects, 2D  the n  b design matrix of observa-

tions versus rows,  the b  1 vector of column effects and  

is the n  1 vector of random errors with E() = 0 and 

D() = 2In.  
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 The information (C) matrix under two-part SI block de-

sign set-up is: 

 

 1 1 1 2 2 2 2 1 1 1
1

1
( ) ,vC X X X X X X X X v N N

r

       I  

   upon simplification, (2) 

 

where N1 is the incidence matrix of treatment versus blocks. 

 Now, if we add another source of variation in eq. (1), we 

get the experimental model for two-part RCDs for v treat-

ments, each replicated r times arranged in p rows and q 

columns. It can be represented in matrix notation as 

 

 1 2 3 ,      D D Dy      (3) 

 

where 2D  is the n  p design matrix of observations versus 

rows,  the p  1 vector of row effects, 3D  the n  q design 

matrix of observations versus columns,  the q  1 vector 

of column effects and the other terms are as defined in eq. 

(1).  

 The C-matrix can be derived and simplified as: 
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where N1 and N2 are the incidence matrices of treatment 

versus rows and rows versus columns respectively. N2 is 

further partitioned into *
2N  of order p  (q – 1), so that it 

will be conformable for multiplication and * *
2 2N N  is a full 

rank sub-matrix of 2 2 .N N  

Results and discussion 

Two-part SI block designs 

Consider two IBDs, ð1 and ð2, which satisfy the condition 

b1 = b2. Fill k1 positions in each block of ð1 with contents 

of any one block of ð2. The block contents of ð2 may have 

to be rearranged so that the conditions of not a single treat-

ment combination occurring more than once in any given 

row, each treatment combination occurring at most once in 

any given column, and each individual component of treat-

ment combination occurring equally frequently in each 

column are satisfied. Thus, the resultant design will be a 

two-part SI block design with columns as blocks. The para-

meters of the two-part SI block design are: v treatment 

combinations, r = 2k1 replications, and b = v1 blocks, each 

of size k = r1.  

 

Example 4.1: Suppose we have four components, say poul-

try, piggery, goatery and fishery. The Supplementary mate-

rial (Figure 2 of Appendix 1) shows all possible two-tuple 

combinations of the four components (Figure 1). 

 The experiment was conducted at nine locations. Our ob-

jective was to find the best combination of components for 

each location. For this, we need to ensure that each location 

receives all the combinations. Let us consider two IBDs, 

ð1 (lattice partially balanced IBD) with parameters v1 = 9, 

b1 = 12, r1 = 4, k1 = 3, representing the location and ð2 (an 

unreduced balanced IBD with repeated blocks) with parame-

ters v2 = 4, b2 = 6, r2 = 3, k2 = 2, representing component 

combinations. 

 Adoption of every farming system may not be possible 

by each household due to a shortage of resources. Hence, 

one may apply the same treatment combination (a particular 

block content of ð2) in all the k1 = 3 positions (locations 

where the components are available), such that the compo-

nent treatments occur equally frequently in each block. 

Thus, the resultant design will be a two-part SI block design 

with parameters v = 6, b = 9, r = 6 and k = 4, considering 

the locations as blocks (Figure 2). 

 The two-part SI block design so obtained is structurally 

incomplete and equi-replicate. 

 In continuation with Example 4.1, if we add another 

source of variation, e.g. if households are replaced by  

farmers (grouped on the basis of economic status), then a 

SIRCD can be developed in a manner similar to block de-

signs. The resultant design will be a two-part SIRCD with v  

 

 

Block ð1 (9, 12, 4, 3)  ð2 (4, 6, 3, 2) 

1 1, 6, 8  1,2 

2 2, 4, 9  1,4 

3 3, 5, 7  2,3 

4 1, 5, 7  1,3 

5 2, 6, 8  2,4 

6 3, 4, 9  3,4 

7 1, 6, 8   

8 2, 4, 9   

9 3, 5, 7   

10 1, 5, 7   

11 2, 6, 8   

12 3, 4, 9   

 

Figure 1. Block contents of two IBDs, ð1 (v1 = 9, b1 = 12, r1 = 4, 
k1 = 3) and ð2 (v2 = 4, b2 = 6, r2 = 3, k2 = 2). 

https://www.currentscience.ac.in/Volumes/124/09/1053-suppl.pdf
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treatment combinations, each replicated r = v1 times, p = 

b1 = b2 rows and q = v1 columns. 

 

Example 4.2: We consider here two designs, ð1 (a triangular 

partially balanced IBD19) and ð2 (an unreduced BIB de-

sign) with v1 = 10, b1 = 6, r1 = 3, k1 = 5 and v2 = 6, b2 = 6, 

r2 = 3, k2 = 2 respectively, with block contents of ð1 and ð2 

as given in Figure 3. 

 Each block of ð2 represents a type of two-component 

combination. The first row of the design will receive any 

five out of the six types of combinations in positions 1, 3, 4, 

5 and 9. The remaining five rows are filled similarly, manner 

corresponding to the treatment positions of ð1. Here, r1 = 3; 

hence each age group can be given only three treatment 

combinations. To find the best combination for each age 

group, every combination needs to be attempted by each age 

 

 
 Location 

 1 2 3 4 5 6 7 8 9 

1 1,2     1,2  1,2  

2  1,4  1,4     1,4 

3   2,3  2,3  2,3   

4 1,3    1,3  1,3   

5  2,4    2,4  2,4  

6   3,4 3,4     3,4 

7 3,4     3,4  3,4  

8  2,3  2,3     2,3 

9   1,4  1,4  1,4   

10 2,4    2,4  2,4   

11  1,3    1,3  1,3  

12   1,2 1,2     1,2 

 
Figure 2. Two-part SI block design with parameters v = 6, b = 9, r = 6 
and k = 4. 

 

 

Blocks ð1 (10, 6, 3, 5) ð2 (6, 6, 3, 2) 

1 1, 3, 4, 5, 9 1, 2 

2 2, 4, 5, 6, 10 1, 4 

3 1, 4, 6, 7, 8 2, 3 

4 2, 5, 7, 8, 9 1, 3 

5 3, 6, 8, 9, 10 2, 4 

6 1, 2, 3, 7, 10 3, 4 

 
Figure 3. Block contents of two designs, ð1 (v1 = 10, b1 = 6, r1 = 3, 
k1 = 5) and ð2 (v2 = 6, b2 = 6, r2 = 3, k2 = 2). 

 

 

 Locations 

 1 2 3 4 5 6 7 8 9 10 

1 1,2  1,3 2,3 1,4    2,4  

2  1,3  2,4 2,3 3,4    1,4 

3 1,3   1,4  1,2 2,4 2,3   

4  1,4   3,4  2,3 2,4 1,2  

5   2,3   1,3  3,4 1,4 1,2 

6 1,4 2,3 3,4    1,2   2,4 

7 2,3  1,4 3,4 2,4    1,3  

8  2,4  1,2 1,3 1,4    3,4 

9 2,4   1,3  2,3 3,4 1,2   

10  3,4   1,2  1,4 1,3 2,3  

11   1,2   2,4  1,4 3,4 1,3 

12 3,4 1,2 2,4    1,3   2,3 

 

Figure 4. Two-part SIRCD with v = 6, r = 10, p = 12, q = 10. 

group. Therefore, blocks of ð1 may be replicated again so 

that all six combinations appear in each column exactly 

once. Thus, the resultant design so obtained will be a two-

part SIRCD with v = 6 treatment combinations, each rep-

licated r = 10 times, p = 12 rows and q = 10 columns 

(Figure 4).  

 The two-part SIRCD obtained is structurally incomplete, 

equi-replicate, and both row and column components are 

balanced. 

 

Example 4.3: Sometimes, it may not be possible to obtain 

12 rows and 10 columns as in Example 4.2 for the same 

number of treatment combinations. For such situations, one 

must obtain designs with a lesser number of rows and col-

umns. Let us consider two designs, viz. ð1 (v1 = 6, b1 = 3, 

r1 = 2, k1 = 4) and ծ2 (v2 = 6, b2 = 6, r2 = 3, k2 = 2), where 

ð1 is a singular group divisible design and ð2 an unreduced 

BIB design (Figure 5).  

 Following the procedure detailed above, a two-part 

SIRCD with v = 6 treatment combinations, r = 6, p = 9 

and q = 6 is obtained (Figure 6).  

 Simplified general forms of the C-matrix pertaining to 

Examples 4.1, 4.2 and 4.3 are given in the Supplementary  

material (Appendix 2), along with association schemes 

followed by the treatment combinations.  

Randomization  

Due to the structurally incomplete nature of the designs 

discussed above, the randomization procedure is somewhat  

 

 

 

Blocks 
ð1 (6, 3, 2, 4)  

Blocks 
ð2 (6, 6, 3, 2) 

Treatments  Treatments 

1 1,2,3,4  1 1,2 

2 1,2,5,6  2 1,4 

3 3,4,5,6  3 2,3 

   4 1,3 

   5 2,4 

   6 3,4 

 

Figure 5. Block contents of two designs, ð1 (v1 = 6, b1 = 3, r1 = 2, 
k1 = 4) and ð2 (v2 = 6, b2 = 6, r2 = 3, k2 = 2). 

 

 

 

 Locations 

F
a

r
m

e
r
s 

 1 2 3 4 5 6 

1 1,2 1,3 1,4 2,3   

2 1,3 2,4   3,4 1,2 

3   2,3 1,4 2,4 3,4 

4 1,4 2,3 1,2 1,3   

5 3,4 1,2   1,3 2,4 

6   2,4 3,4 2,3 1,4 

7 2,3 1,4 1,3 1,2   

8 2,4 3,4   1,2 1,3 

9   3,4 2,4 1,4 2,3 

 
Figure 6. Two-part SIRCD with v = 6, r = 6, p = 9 and q = 6. 

https://www.currentscience.ac.in/Volumes/124/09/1053-suppl.pdf
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restricted compared to block designs or RCDs. The steps 

are of randomization given below: 

 

  Randomize v treatment combinations, i.e. random allo-

cation of treatment combinations to 1, 2, …, v random 

numbers.  

  Randomize q columns, keeping rows undisturbed. 

  Randomize p rows, keeping columns undisturbed and 

considering the available resources in each location. 

  Randomization within rows and columns is also restric-

ted. 

Efficiency factor 

The information (C) matrix pertaining to the estimation of 

treatment contrasts after adjusting the effects of rows and/ 

or columns/blocks, according to the nature of the design 

considered, can be easily estimated using the derived ex-

pressions given in eq. (2) and/or eq. (4) by substituting N1 

and *
2N  matrices as required. A program has been written 

in Statistical Analysis System (Supplementary Appendix 

3) to facilitate the easy computation of the C-matrix and 

canonical efficiency factors of the proposed designs. In 

comparison to an equi-replicate and proper orthogonal de-

sign with the same number of treatments, the efficiency 

factors of these designs can be computed as 1( )
r

 times the 

harmonic mean of non-zero eigenvalues of the information 

matrix pertaining to the proposed designs20.  

 The canonical efficiency factors of the designs in Ex-

amples 4.1, 4.2 and 4.3 are 0.8824, 0.9559 and 0.8333 res-

pectively. 

Summary  

The transition from a mono-cropping system to an IFS-based 

resilient system is pivotal for small and marginal farmers. 

Two-part RCDs and block designs obtained by combining 

two or more IBDs give a powerful solution in identifying 

the best suitable location-specific IFS combinations. How-

ever, every selected household/group of farmers may not be 

able to adopt/afford all IFS combinations. Hence, two-part 

SI designs for comparing a set of treatment combinations are 

suggested. These designs are easy to construct and have 

reasonably high-efficiency factors, which will encourage 

researchers to adopt them. 
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