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Crop health monitoring and assessment have become 
more successful with the advent of remote sensing tech-
nology in agriculture. Using this technology, retrieving 
information about crop biophysical parameters on a 
non-destructive basis at spatial and temporal scales has 
been made possible. Several drone-derived spectral vege-
tation indices (VIs) have assessed crop growth status in 
a larger farming area. In this study, we generated VI 
maps for a cotton field area in the Tamil Nadu Agricul-
tural University, Coimbatore, India. The ground-truth 
chlorophyll data (SPAD-502 Minolta meter) were collec-
ted from the field on the same day of drone image ac-
quisition. Pearson correlation analysis and regression 
analysis were done for validation and accuracy of the 
ground-truth chlorophyll data and VIs. The study re-
veals that obtaining near real-time chlorophyll content 
using high spatial resolution drone images is quick and 
reliable.  
 
Keywords: Chlorophyll content, cotton crop, drone, multi-
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THE advancement of remote sensing technology in agricul-
ture has made it possible to acquire information at spatial 
and temporal scales. Drone (dynamic remotely operated 
navigation equipment), commonly known as unmanned 
aerial vehicle (UAV), has been primarily developed for 
civilian and military purposes1. It could be an inexpensive 
and more practical replacement for satellite remote sensing in 
agriculture for monitoring vegetation status2. Nowadays, a 
drone equipped with multispectral sensors can be used to 
assess the in-field spatial variability of crop conditions. The 
modern multispectral sensors have made remote sensing 
more informative and expanded its range of applications3. 
It is a valuable tool for assessing crop condition, monitoring 
vegetation cover, nutrient and water status, crop quality, 
i.e. infestations, weed/pest/disease, crop yield and produc-
tion forecasting, etc.4. 

 The agricultural remote sensing users apply numerous 
spectral vegetation indices (VIs) of nominal reflectance val-
ues derived from different multispectral bands of the follo-
wing wavelengths: blue (440–510 nm), green (520–590 nm), 
red (630–685 nm), red edge (690–730 nm) and near-infrared 
(760–850 nm) for intuitive visualization of crop growth 
status5. Indices are defined as the ratio of the difference 
between the reflectance of different spectral bands, which 
provide different data layers6. The indices help monitor 
crop growth status as they can enhance the spectral differ-
ences at specific wavelengths7. VI is a data-processing 
method that considers the vegetation spectrum information 
using different linear combinations of the ratio between the 
visible and near-infrared spectrum8. The fundamental rea-
son for this is that plant has a high sensitivity to visible 
and near-infrared wavelengths, and a combination of these 
two bands is effective. VIs strengthen the information 
about closed vegetation.  
 Chlorophyll is a good predictor of plant vigour and 
health, allowing for the estimation of final crop yield. The 
chlorophyll content indirectly relates to the crop nitrogen sta-
tus, ultimately deciding the crop productivity. However, 
the manual method of measuring chlorophyll content is de-
structive and time-consuming, and obtaining information 
on spatial context is inaccurate. Images from a sensor 
mounted on a portable UAV will be further useful to un-
derstand image-based crop biomass and nitrogen content 
estimations9. Chlorophyll-specific VIs, in particular, have 
proven to be more relevant than normalized VIs in some 
circumstances, as they encompass a variety of combinations 
from bands that reflect vegetation accurately10. These VIs 
were selected to reflect band combination variations and 
sensitivity to soil background, biomass and chlorophyll 
content11. Chlorophyll has strong red absorption peaks and 
prominent near-infrared reflectance peaks12. Red absorption 
is at its highest between 660 and 680 nm. This is because, 
except for high chlorophyll content, the 660–680 nm absorp-
tion range tends to be saturated at low chlorophyll levels and 
to reflect in the near-infrared region, decreasing the sensitivity 
of the spectral indices based on this wavelength13. The goal 
is to detect subtle changes in nitrogen content/deficiencies14.
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Figure 1. a, Location of the study area. b, Aerial view of the field. 
 
 
In precision agriculture, for a variable rate of fertilizer appli-
cations, data obtained at different spatial levels will be more 
beneficial for successful decision-making. This study aimed 
to (i) estimate cotton chlorophyll content at the spatial level 
using drone-derived multispectral VIs and (ii) validate the 
derived spectral indices using chlorophyll data measured 
using a SPAD meter. 

Materials and methods 

Study area 

The experiment was carried out in a cotton research field 
at the Department of Cotton, Tamil Nadu Agricultural 
University, Coimbatore, India. The study area covers 

about 3.5 acres with geo-coordinates from 11°01′13.99″N 
lat. and 76°55′44.69″E long. to 11°01′11.98″N lat. and 
76°55′49.82″E long. at an altitude of 429 m amsl (Figure 1).  

Data collection 

Image acquisition: This study used a quadcopter drone 
with a payload of Micasense RedEdge multispectral cameras 
(Table 1). The significant advantage of this equipment is 
its vertical take-off and landing capabilities, which can be 
operated from confined places. Furthermore, this aircraft can 
be automated by giving waypoints. Ground control station 
software (UgCS) was used to plan the flight path (way-
points, altitude, heading direction and speed). UgCS Map-
per is a lightweight photogrammetry software that can work 
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purely offline in the field, create maps and elevation data on 
the fly and stitch multispectral images into orthomosaics. 
 A flight mission (Figure 2) was carried out on 22 Decem-
ber 2021, under a clear sky between 11 am and 12 pm for 
9 min for multispectral image collection. The camera cap-
tures the photograph, stores it in memory and sends it to 
the ground station through telemetry. In addition, MicaSense 
RedEdge calibration was done using a calibrated reflec-
tance panel (CRP). The calibration was done immediately 
before each flight according to the instructions given in 
the calibration manual. 
 
Ground data collection: The ground data were collected 
on 22 December 2021, when drone images were captured. 
Non-destructive chlorophyll readings were measured using 
the SPAD-502 Minolta meter as the light transmittance ratio 
at a wavelength of 650 and 940 nm at three points of the 
third leaf and averaged to get the precise result. Fifteen 
geo-tagged ground data were collected randomly to vali-
date VI. 

Data processing 

Image processing: Multispectral images obtained were pro-
cessed (Figure 3) using Pix4D mapper software. The raw 
data were processed, analysed and geo-referenced to pro-
duce an orthomosaic. In addition, multiple overlapped im-
ages obtained were stitched together to generate a large 
map for an accurate geo-referenced map.  
 
Vegetation index processing: VIs are the primary tool for 
analysing aerial images15. First, post-processed photographs 
were used to generate VIs maps using ArcGIS 10.6 software. 
Then, the VI formula (Table 2) was applied to obtain infor-
mation from the processed data. The most common VI is 
NDVI, which plays a significant role in assessing crop 
growth status, vigour and yield. However, some of the red 
edge-based vegetation indices, viz. normalized difference 
red edge index (NDRE), red edge difference vegetation index 
(REDVI) and modified chlorophyll absorption ratio index 
(MCARI) perform better when compared to NDVI16. In 
addition, the green normalized difference vegetation index 
(GNDVI) and optimized soil adjusted vegetation index 
(OSAVI) help predict the chlorophyll content of the vege-
tation. Utilizing the ground data coordinates, spectral in-
formation from the different VIs was extracted using the 
pixel-by-value tool in ArcGIS 10.6. Finally, the extracted 
spectral information was subjected to statistical analysis 
(Figures 2 and 3). 

Data acquisition 

Step 1: UAV-mounted with a multispectral sensor was used 
to collect aerial images of cotton crops and geo-tagged 
ground-truth data were collected using the SPAD meter. 

Data processing 

 Step 2: Initial processing was done using Pix4D software. 
 Step 3: Next, point cloud and mesh were generated. 
 Step 4: Digital surface models, digital terrain models, 
orthomosaics and indices were calculated. 
 Step 5: VIs were estimated using the raster calculator 
tool in Arc10.6. 
 
 
Table 1. Unmanned aerial vehicle flight information and sensor speci- 
  fications 

Platform Quadcopter 
Flight speed (m s–1) 8 
Flight altitude (m) 30 
Per cent overlap 70 
Ground sample distance 8 cm per pixel (per band)  
Sensor model Micasense RedEdge 
Spectral bands Blue, green, red, red edge, near-IR 
Wavelength (nm) Blue (475 nm centre, 20 nm bandwidth),  

 green (560 nm centre, 20 nm bandwidth),  
 red (668 nm centre, 10 nm bandwidth),  
 red edge (717 nm centre, 10 nm  
 bandwidth) and near-IR (840 nm  
 centre, 40 nm bandwidth) 

Sensor size (mm) 23.5 × 15.6 
Image resolution (pixels) 10,116 × 4,219  
 
 
 

 
 

Figure 2. Unmanned aerial view route plan of the study area. 
 
 

 
 

Figure 3. Flow chart depicting the methodology used. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 123, NO. 12, 25 DECEMBER 2022 1476 

Table 2. Vegetation indices used in the study 

Index Equation Applications 
 

NDVI NIR R
NIR R

−
+

 
To estimate vegetation growth and biomass quantitatively25. 

NDRE NIR RE
NIR RE

−
+

 
It is a much better indicator for crop health/vigour and is also used for N  
 management in crops26. 

GNDVI NIR G
NIR G

−
+

 
It is one of the most widely used vegetation indices for estimating nitrogen  
 uptake in the crop canopy and chlorophyll content27. 

REDVI  NIR – RE It is mainly used for estimating the N-uptake and concentration28. 

OSAVI 1.16 (NIR R)
NIR R 0.16

−
+ +

 
It is mainly used for estimating the N-uptake in crops29. 

MCARI RE
R

× {(RE – R) – 0.2 (RE – G)} 
It is mainly used for estimating the chlorophyll content30. 

 

 
 Step 6: Then, using the pixel-by-value tool in Arc10.6, 
values for the geo-tagged points were extracted. 

Output 

Step 7: Pearson correlation analysis was done between the 
ground-truth SPAD value and the extracted VI value to 
find the best-fitting indices. 
 Step 8: Regression analysis was done to estimate the 
best-fitting regression equation and R2 value between the 
ground-truth SPAD and extracted VI values. 
 Step 9: The best-fitting regression equation was further 
used to develop the predicted chlorophyll map for the study 
area. 

Statistical analysis 

Statistical analysis was done using Minitab software for 
validation. First, Pearson correlation analysis was done to 
identify the best VI having the highest correlation with 
ground-truth chlorophyll data. The correlation coefficient 
(R) is useful in determining the correlation strength between 
the two datasets. The mathematical formula for calculating 
the r-value is given in eq. (1). Next, the coefficient of deter-
mination (R2) and root mean square error (RMSE) values 
were estimated to predict the model accuracy. Finally, regres-
sion (R2) values were estimated for VIs (independent varia-
ble) and ground-truth chlorophyll data (dependent variable) 
to find the best line-of-fit. A higher R2 and lower RMSE value 
indicate that the independent variable is highly predictable 
from the dependent variable. Therefore, eqs (2) and (3) 
were used to calculate R2 and RMSE17,18 respectively. 
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where xi and yi are the predicted and measured values res-
pectively, x� and y� are the average predicted and measured 
values respectively, and n is the sample number. 

Results and discussion 

The UAV-collected high-resolution multispectral images 
for chlorophyll content yielded positive and strongly corre-
lated results. The study area generated different VI maps, 
viz. NDVI, NDRE, GNDVI, REDVI, OSAVI and MCARI 
(Figure 4). Table 3 lists the mean values of different VIs. 
The map outcomes of VIs were different as each index uses 
various wavebands. These indices are useful for detecting 
differences in the greenness and chlorophyll content of crops. 
By utilizing the ground-data coordinates in ArcGIS 10.6, 
15 points were selected from the indices map and extracted 
point values were using the pixel-by-value tool. Statistical 
analysis was done to establish a relationship between UAV-
derived VI value and ground-truth chlorophyll data. Pear-
son correlation analysis helped identify the most sensitive 
VI with respect to the chlorophyll content. Figure 5 shows a 
positive and linear correlation between different VIs and 
ground-truth chlorophyll data. 
 Table 3 reveals that there is a difference between the VI 
values and SPAD readings. This is due to differences at the 
field level, as the research field consisted of different cotton 
varieties for experimental purposes. The SPAD readings 
ranged from 28.9 to 65.4. The range of values for different 
VIs was as follows: NDVI from 0.134 to 0.838, NDRE 
from 0.171 to 0.39, GNDVI from 0.264 to 0.648, REDVI 
from 0.009 to 0.05, OSAVI from 0.04 to 0.369, and MCARI 
from –0.002 to 0.137. The lowest and negative values in some 
indices show that they are sensitive to non-photosynthetic 
materials and background soil properties where the red 
edge values are higher than the NIR values in some parts of 
the pixel. 
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Figure 4. Vegetation index map generated using ArcGIS software: a, NDVI; b, NDRE; c, GNDVI; d, REDVI; e, OSAVI; f, MCARI. 
 
 

Table 3. Ground truth SPAD value and vegetation index value for geo-tagged points 

Latitude     Longitude SPAD NDVI NDRE GNDVI REDVI OSAVI MCARI 
 

11.0200 76.9297 35.5 0.319 0.228 0.395 0.015 0.104 0.004 
11.0203 76.9306 38.2 0.366 0.325 0.430 0.011 0.070 0.001 
11.0203 76.9297 35.1 0.134 0.171 0.264 0.009 0.040 –0.002 
11.0199 76.9302 62.4 0.800 0.306 0.546 0.026 0.256 0.098 
11.0202 76.9300 52.5 0.767 0.333 0.531 0.027 0.244 0.067 
11.0199 76.9299 65.4 0.838 0.390 0.648 0.050 0.369 0.137 
11.0200 76.9303 48.7 0.773 0.330 0.563 0.026 0.243 0.068 
11.0201 76.9305 38.3 0.475 0.258 0.410 0.014 0.126 0.012 
11.0199 76.9296 53.7 0.823 0.407 0.597 0.027 0.232 0.059 
11.0202 76.9296 38.7 0.166 0.181 0.257 0.010 0.048 –0.001 
11.0200 76.9293 50.1 0.723 0.290 0.544 0.031 0.280 0.080 
11.0201 76.9299 28.9 0.471 0.246 0.361 0.013 0.122 0.012 
11.0203 76.9304 45.5 0.588 0.228 0.419 0.020 0.205 0.043 
11.0202 76.9294 39.4 0.351 0.233 0.324 0.011 0.084 0.004 
11.0201 76.9295 51.6 0.745 0.312 0.521 0.021 0.205 0.053 

 
 
 Table 4 shows the regression equation and RMSE values 
for VIs. Among VIs, MCARI had a higher positive corre-
lation coefficient (R = 0.933) with the ground chlorophyll 
data than the other indices. MCARI recorded values from 
0.390 to –0.009 with R2 value of 0.87 and RMSE of 3.91. 
This shows that MCARI has higher accuracy for predicting 
chlorophyll content. OSAVI recorded values from 0.455 to 
–0.037 with a higher positive correlation coefficient R  
= 0.879, R2 value of 0.77 and RMSE of 5.19. REDVI had 
a positive correlation coefficient R = 0.857, and recorded 

values from 0.083 to –0.002 with R2 value of 0.73 and 
RMSE of 5.60. A higher correlation coefficient indicates 
healthy/dense vegetation with more chlorophyll content, 
whereas lower values indicate stressed/sparse vegetation 
with low chlorophyll content.  
 The GNDVI values ranged from 0.809 to –0.045 with a 
positive correlation coefficient R = 0.848, R2 value of 0.71 
and RMSE of 5.77. On the other hand, a lower positive cor-
relation coefficient (R = 0.834) was recorded with NDVI, 
having values from 0.894 to –0.063 with R2 value of 0.69 
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Figure 5. Relationship between NDVI, NDRE, GNDVI, REDVI, OSAVI, MCARI and SPAD chlorophyll readings using Pearson correlation analysis. 

 
 
Table 4. Regression and RMSE analysis between NDVI, NDRE,  
  GNDVI, REDVI, OSAVI, MCARI and SPAD value 

SPAD value 
 

Vegetation index Regression equation R2 RMSE 
 

NDVI y = 25.82 + 35.58x 0.69 6.01 
NDRE y = 14.78 + 109.1x 0.52 7.47 
GNDVI y = 12.25 + 73.5x 0.71 5.77 
REDVI y = 28.77 + 812x 0.73 5.60 
OSAVI y = 29.09 + 94.2x 0.77 5.19 
MCARI y = 35.91 + 229.3x 0.87 3.91 

 
 

and RMSE of 6.01. NDRE had the least positive correlation 
coefficient (R = 0.727) with values ranging from 0.642 to 
–0.043, and R2 value of 0.52 and RMSE of 7.47. 
 Chlorophyll-sensitive VIs performed better than other 
indices using green and red wavelengths. These indices act 
as direct proxies to crop biochemistry19, whereas the chlo-
rophyll-sensitive indices act as indirect proxies. This is 
because the crop leaves are more translucent to red edge 
wavelength, which can penetrate more deeply into the leaf 
cells than red and blue wavelengths. Hence MCARI is 
significantly correlated to crop chlorophyll content than 
the other indices. This conforms with Raper and Varco20 
that chlorophyll-specific VIs are more suitable for predict-
ing chlorophyll content. 
 Chlorophyll absorption showed a saturation tendency at 
lower chlorophyll content in the red region between 660 
and 680 nm, thus weakening the sensitivity of VIs to increa-
sed chlorophyll content. Absorption in the region around 
550 or 700 nm at increasing chlorophyll concentration also 

showed the same phenomenon21. As a result, spectral indi-
ces that include these bands in the later regions would be 
more precise in determining chlorophyll content22. 
 The regression equation of the highly correlated vegeta-
tion index MCARI was further used to generate the chloro-
phyll map for the whole study area (Figure 6). The SPAD 
value ranged from 18.8 to 44.0. The regression equation 
was further tested for accuracy using the ground-truth 
SPAD data, resulting in an R2 value of 0.79 (Figure 7). 
The higher chlorophyll status reveals the healthy condi-
tion of the crop, while the lower chlorophyll status depicts 
its stressed condition. These spatial variations can be further 
used for precise site-specific nitrogen management practi-
ces. They are also useful in discriminating the spatial chlo-
rophyll content using the high-resolution multispectral 
imageries of UAVs at a regional scale. 

Conclusion 

Accurate, real-time and early identification of crop chloro-
phyll status is beneficial for agricultural management systems 
and assists in fertilizer application efficacy23. Chlorophyll 
concentration has been preferred by agronomists for 
growth diagnosis and is currently seeking to be predicted 
more accurately from spectral data. Chlorophyll content 
better depicts the interaction of matter and light per unit sur-
face area24. Since chlorophyll accumulation is substantially 
correlated to crop biomass, VIs based on NIR bands could 
also be used to quantify chlorophyll accumulation at the 
canopy level. MCARI was best suited for assessing the 
chlorophyll content with a higher correlation coefficient 
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Figure 6. Chlorophyll map of the study area. 
 
 

 
 

Figure 7. Accuracy assessment between observed and predicted SPAD values. 
 
 
(R = 0.933) and R2 value of 0.87 among the VIs used in 
this study. MCARI is the only index that uses both red and 
red edge bands, as these regions are more specific for de-
tecting vegetation status. This confirms that red edge-based 
VIs are more sensitive to chlorophyll content and perform 
better when compared to NDVI, as red edge light penetrates 
a leaf significantly more deeply than red or blue wavelengths. 
The chlorophyll map generated using the regression equa-
tion will be helpful in the farmers’ decision-making for 
nutrient application.  
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