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Active learning (AL) technique is the classification of 
remote sensing images, where collecting efficient 
training data is costly in terms of labour and the time 
taken. The prime objective of AL technique is to ob-
tain high classification accuracy with the training 
sample as compact as possible. Most studies on the 
classification of remote sensing images using AL,  
focused only on accuracy, with hardly any study on 
computation time. Keeping reduction of computation 
time as the objective, here we present, an entropy 
query by bagging (EQB)-based AL approach in the 
extreme learning machine (ELM) framework for  
remote sensing image classification. The performance 
of this approach is compared with the widely used 
support vector machine (SVM) AL framework in com-
bination with different query strategies. To verify the 
efficacy of the study, the approaches were tested on 
two hyperspectral remote-sensing images, i.e. Kennedy 
Space Centre (KSC) and Botswana (BOT). The pro-
posed system depicts competitive classification perfor-
mance while significantly reducing computation time. 
 
Keywords: Active learning, computation time, extreme 
learning machine, entropy query by bagging. 
 
AS a significant breakthrough in the area of remote sens-
ing images in the past, the hyperspectral image (HSI) is 
capable of acquiring hundreds of narrow spectral bands 
varying from visible to infrared. These spectral bands 
carry information that has greater ability to analyse land-
cover scenes on the earth’s surface, which is difficult in 
multispectral images1. These features of HSI provide 
scope for studying different applications such as urban 
planning2, forest monitoring3, agriculture4 and land cov-
er5. HSI classification is one of the basic features in many 
remote sensing applications and has attracted the atten-
tion of several researchers recently6–10. Many supervised 
learning algorithms have been explored to solve the  
classification problems. The performance of supervised 
learning is influenced by the quality and quantity of the 

training set. However, obtaining an efficient training set 
is costly in terms of labour and time in case of remote 
sensing images11. To address such issues, the active 
learning (AL) technique is extensively used where only 
uncertainty and representative training samples are  
selected to train the model11–18. 
 The AL algorithm is a strategy that collects most un-
certainty samples from the unlabelled dataset by applying 
a query strategy19. The true class labels are assigned to 
these uncertainty samples to retrain the model with an 
updated labelled dataset, thus improving the classification 
performance. Hence, there is no need to label non-
uncertainty samples, which effectively decreases the time 
and cost11. However, determining the uncertainty samples 
is a challenging task. Hence, the main focus of the AL 
technique is query strategy, which finds the samples with 
most uncertainty from the unlabelled dataset to increase 
the learning ability of the classifier. The various query 
strategies are presented in the literature19,20. They are 
grouped mainly into three families, viz. (i) large margin-
based strategy, (ii) posterior-based strategy and (iii) 
committee-based strategy. The first family is mainly 
based on the support vector machine (SVM) classifier19. 
Various heuristics, in this family, include, margin sam-
pling (MS)21, significance space construction (SSS)22 and 
multiclass level uncertainty (MCLU)23. The second family 
relies on the concept of posterior probability, and  
includes classifiers such as maximum likelihood classifi-
er13, multinomial logistic classifier24,25 and probabilistic 
SVM classifier19,26 with AL heuristic such as Kullback–
Leibler (KL)–Max13, mutual information (MI)27 and 
breaking ties (BT)28. The third family can adopt any type 
of classifiers. The key feature of the third family is to 
choose samples with the most uncertainty on the basis of 
heuristics that includes active democratic co-learning29, 
query by bagging30, active DECORATE31, entropy based 
AL20 and multiview disagreement-based AL11,32. 
 According to the literature, enough classification accu-
racy has been gained for HSI classification utilizing the 
AL approach, but the computing time is very high33,34. 
However, it is observed that the extreme learning
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Figure 1. Block diagram of the general active learning process. 
 
 
machine (ELM) gives equally good classification accuracy 
in comparison to traditional classifiers, while significant-
ly reducing the computation time35–37. ELM has been  
explored for HSI classification38–41, but there are only a 
few attempts to classify HSI using ELM with the AL 
technique16,42. This study discusses entropy query by 
bagging (EQB)-based AL approach in ELM framework 
for the classification of HSI. Moreover, the performance 
of this approach has been compared with the widely used 
support vector machine (SVM) AL framework, in combi-
nation with different query strategies such as random 
sampling (RS) and multiview (MV). In this way, we have 
compared six AL models: ELM–RS, ELM–MV, ELM–
EQB, SVM–RS, SVM–MV and SVM–EQB. Thus, the 
objectives of this study are: (i) integrating EQB query 
strategy into the AL technique with ELM classifier; (ii) 
comparative performance analysis of six AL models 
made up of crisscross combination of two classifiers 
(SVM, ELM) and three query strategies (RS, MV, EQB) 
and (iii) obtaining adequate classification accuracy using 
the proposed model (ELM–EQB) while significantly  
reducing the computation time. 

Methodology 

AL is a strategy to iteratively collect uncertainty samples 
from the unlabelled dataset through a trained model. The 
uncertainty samples are also referred to as the most in-
formative samples. The AL model is a quintuple (G, Q, S, 
CL and CU)43. Samples from the dataset are unbiasedly 
grouped as training and testing (CT) sets. The training set 
is grouped into a small set (CL) having labels called ini-
tial training set and the remaining as unlabelled set (CU). 
G denotes the classifier which is first trained with the ini-
tial CL. While Q is a query function which is utilized to 
collect samples with the most uncertainty from CU. S acts 
as a supervisor and plays a vital role in assigning the  
correct class labels to the collected uncertainty samples. 

Collecting uncertainty samples, updating of CL by  
appending these uncertainty samples and retraining of G 
with the updated GL are performed at every iteration. This 
process is repeated till the predefined condition (number 
of iterations) is met. In this study, ELM is used as a  
classifier (G) and EQB is used as a query strategy (Q). 
Figure 1 is a block diagram of general AL process. 

Extreme learning machine 

The ELM, first proposed by Huang et al.35, is a single 
hidden layer feed forward neural network (SLFN). The 
pertinent parameters such as weights and biases are ran-
domly assigned from the input to the hidden layer and not 
tuned in the entire process. The weights and biases are 
updated only in the hidden to the output layer. In this 
way, ELM achieves excellent generalization performance, 
fast computation and straight-forward solution35–37. Figure 
2 shows the architecture of ELM. It comprises N, L and 
M number of neurons in the input layer, hidden layer and 
output layer respectively. Let us consider CL training 
samples, each denoted as (xj, yj) where xj and yj are the  
input and output vector of the jth sample. The ELM model 
with an activation function G(wi, bi, xj) can be expressed as 
 

 L L
1

( ) ( , , );   1,  2,...,
L

j i i i j
i

f x G w b x j Cβ
=

= =∑  

 

     and 1,2,.., ,i L=  (1) 
 
where wi and bi are the ith weight vector and bias from 
the input layer to the hidden layer respectively, and βi is 
the weight vector connecting the ith hidden layer to the 
output layer. Here, G(wi, bi, xj) denotes the activation 
function (sigmoid, radial basis, sine, etc.) which is used 
to determine the output of the ith hidden node for the jth 

training sample. Each neuron of the input layer is  
connected to all neurons of the hidden layer. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 119, NO. 6, 25 SEPTEMBER 2020 936 

 Here, the focus is to minimize the cost function (E) of 
ELM using eq. (2) as given below 
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Query strategy 

The strategy to determine the samples with most uncer-
tainty is known as the query strategy. Here, we have used 
the EQB strategy, and compared it with RS and MV as 
explained in the following sections. 
 
Random sampling-based active learning: RS-based AL 
(RS–AL) randomly picks P number of samples (CP) from 
the unlabelled dataset (CU) without considering any  
criteria. These samples are removed from CU and  
appended to CL after assigning true labels by a supervisor 
(S). Further, the classifier (G) is retrained on the updated 
CL. The algorithm 1 in Box 1 presents the framework of 
RS–AL. 
 
Multiview-based active learning: The classification of 
HSI using the MV query strategy was first introduced by 
Di and Crawford11. Simplicity and flexibility are the  
advantages of this strategy compared to different existing 
query strategies. The spectral features in the MV scenario 
are grouped into several disjoint subsets called views 
(X1 × X2 × ⋅⋅⋅XKV); where KV denotes the number of views 
and X the sample space in HSI. Here we assume that each 
view is sufficient to train the model. The key idea of this 
strategy is based on disagreement between the trained 
models. The samples with most uncertainty were col-
lected based on maximum disagreement between the  
 

 
 

Figure 2. Architecture of the extreme learning machine (ELM)  
followed in this study. 

trained models for different views. Adaptive maximum 
disagreement (AMD) technique is used to compute the 
disagreement between the trained models11 and is given 
in eq. (3) below. 
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where Dmax is the maximum disagreement value, xi is a 
sample from CU, V

jf  is the jth view and D(⋅) is the disa-
greement value on each xi between different views and 
can be defined as follows: 
 

1 2
V V VV V( , , ,..., ) count | | for 1, 2,..., ,VK j
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where count | |⋅  is used to count the number of unique 
elements in the set. Algorithm 2 in (Box 2) presents the 
framework of MV–AL. 
 
Entropy query by bagging-based active learning: Seung 
et al.44 proposed the query by committee (QBC) strategy 
based on maximum disagreement. Freund et al.45 used 
this strategy to collect the uncertainty sample from a  
random stream of inputs, while Abe and Mamitsuka30 
used the QBC model in binary classification. Tuia et al.20 
extended this concept on the multiclass classification  
using entropy heuristic known as entropy query by bag-
ging. The focus of EQB is to build k training sets on 
bootstrap samples 46( ) .

kLC ′  A bootstrap is formed with 
replacement of the original samples in every iteration. 
Each set of bootstrap ( )

kLC′  contains a subset of CL. 
kLC′  

is formed by picking defined percentage (pct) of samples 
randomly from CL. k number of bootstrap sets form a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Box 1. 
 

Algorithm 1: Framework of RS–AL 
 

Initialization steps: 
 1: Randomly divide the dataset into initial training 

(CL), unlabelled (CU) and test (CT) sets. 
 2: Initialize the number of samples (P) to be chosen 

at each iteration. 
 3: Initialize the number of iterations (iter) to be per-

formed. 
 4: Train the classifier (G) on CL. 
 

Repeat 
 

 5: Test the trained classifier (G) on CT and obtain 
the classification accuracy. 

 6: Randomly pick P samples (CP) from CU. 
 7: Extract CP from CU and remove it from CU. 
 8: Label CP by supervisor (S). 
 9: Append CP to CL. 
10: Retrain G with updated CL. 
11: iter = iter + 1. 
 

Until stopping criteria (number of iterations) is satisfied. 
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committee of k models. These bootstrap sets train the cor-
responding models, and the trained models are reused to 
determine the class label of unlabelled samples (CU). 
Therefore, k possible labels for each xi were predicted 
from CU. The selected uncertainty samples are the ones 
for which the predictions are most evenly split as shown 
in eq. (5) below for binary classification. 
 
 

U
G Garg min ||{ | ( ) 1} { | ( ) 0} ||,ˆ

i
i ix C

x G k f x G k f x
∈

= ≤ = − ≤ =  

 (5) 
 
where G is one among the committee of models. If the 
models agree to a certain prediction, then eq. (5) is  
maximized. On the contrary, the uncertainty samples will 
produce small values in the equation. Tuia et al.20  
extended eq (5) to a multiclass problem using maximum 
entropy distribution heuristic of the models. The entropy 
distribution H(xi) is calculated from the k labels of xi as 
follows: 
 

 , 10 ,( ) log ( ),i i k i k
k

H x p p= −∑  (6) 

 
 

where pi,k denotes the probability of having class k for 
xi ∈ CU. H(xi) is calculated for each xi ∈ CU. The maxi-
mum entropy is calculated as follows: 
 
 

U
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∈
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The samples with maximum disagreement value between 
models resulted in maximum entropy. CP was removed 
from CU and added to CL. Algorithm 3 in Box 3 describes 
the EQB-based AL. Figure 3 shows the flow diagram of 
EQB-based AL approach. 

Experimental design 

Data description 

In order to show the effectiveness of the proposed tech-
nique, two HSI datasets, viz. Kennedy Space Centre (KSC) 
and Botswana (BOT) were used in the experiment47.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Box 2. 
 

Algorithm 2: Framework of MV–AL 
 

Initialization steps: 
 1: Randomly divide the dataset into initial training set 

(CL), unlabelled set (CU) and test set (CT). 
 2: Initialize the number of samples (P) to be selected at 

each iteration. 
 3: Initialize the number of iterations (iter) to be per-

formed. 
 4: Generate KV views 

V1 2( , ,..., )KX X X  from the availa-
ble spectral features (X) of HSI. 

 5: Construct the classification models 
V1 2( , ,..., )KG G G  

corresponding to the views 
V1 2( , ,..., )KX X X . 

 

Repeat 
 

 6: Test the trained classifier on CT and obtain the clas-
sification accuracy. 

 7: Predict the class label of each xi ∈ CU corresponding 
to the views

V1 2( , ,..., )KX X X . 
 8: Determine the disagreement value (D) of xi ∈ CU 

using eq. (4). 
 9: Arrange samples in CU in descending order on the 

basis of disagreement values. 
10: Extract CP having maximum disagreement value 

using eq. (3) and discard these samples from CU. 
11: Assign true class label to the retrieved CP by super-

visor (S) and update CL by appending CP. 
12: Retrain the models 

V1 2( , ,..., )KG G G  with updated CL.
13: iter = iter + 1. 
 

Until stopping criteria (number of iterations) is satisfied. 

Box 3. 
 

Algorithm 3: Framework of EQB–AL 
 
Initialization steps: 
 1: Randomly divide the dataset into the initial training 

set (CL), unlabelled set (CU) and test set (CT). 
 2: Initialize the number of samples (P) to be selected 

at each iteration. 
 3: Initialize the number of iterations (iter) to be per-

formed. 
 4: Initialize a set of bootstrap samples (k). 
 5: Initialize percentage (pct) of samples to be drawn 

from CL for bootstrap samples. 
 6: Train the model (G) with the current set of training 

samples (CL). 
 
Repeat 
 
 7: Compute the classification accuracy on CT using G. 
 
for G = 1 to k do 
 
 8: Obtain subset ′( )

GLC  by applying pct of CL. 
 9: Train the Gth model using .′

GLC  
 
End of for 
 
10: Predict the class membership of each xi ∈ CU by 

each Gth model. 
11: Compute the entropy for every xi ∈ CU using eq. (6).
12: Extract samples CP form CU with maximum entropy 

using eq. (7) and assign to further label by supervi-
sor (S). 

13: Update CL by appending the extracted CP. 
14: Retrain G with the updated GL. 
 
Until stopping criteria is satisfied. 
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Figure 3. Flow diagram of entropy query by bagging (EQB) based active learning approach. 
 
These datasets have already been pre-processed by the 
Kennedy Space Center and the UT Center for Space Re-
search, USA respectively47. Both datasets have several 
classes with similarity of vegetation signatures11. There-
fore, it is a challenging task to get high classification per-
formance on these datasets, which motivated us to choose 
them. The KSC dataset33, shown in Figure 4 a, was ac-
quired from KSC, Florida, USA on 23 March 1996. It 
comprises 224 spectral bands and was reduced to 176 
spectral bands after removal of noisy and water bands 
during pre-processing. It comprised of 5211 labelled 
samples with a total of 13 types of land-cover classes. 
Table 1 provides details of land-cover classes. The BOT 
dataset33, shown in Figure 4 b, was acquired from  
Botswana on 31 May 2001. It comprises 242 spectral 
bands and was reduced to 145 spectral bands after  
removal of noisy and non-calibrated bands during  
pre-processing. It comprised of 3248 labelled samples 
with a total of 14 types of land-cover classes. Table 2 
provides the details of land-cover classes. 

Experimental set-up 

The aim of the present study was to classify HSI using 
the AL technique. Further, the focus was to minimize the 
computational cost that was gained by utilizing ELM. 
The ELM with sigmoid activation function having 60 
hidden nodes has been used here, as this combination  
provided better results in case of KSC and BOT datasets 
in our earlier studies16,42. Further, we studied the combi-
nation of ELM classifier with EQB query strategy and  
also compared it with RS and MV query strategies. The 
parameter k of EQB was set to 4 and every kth bootstrap 
contained 60% of CL (ref. 20). In case of the MV strate-
gy, the five views were generated as defined by Di and 

Crawford11 with band indices 1–11, 12–31, 32–96, 97–
130 and 131–176 for the KSC dataset. Similarly, the five 
views were generated with band indice: 1–25, 26–61, 62–
79, 80–110 and 111–145 for the BOT dataset. The initial 
training set (CL) randomly picked five samples from each 
class of the training set. Hence, the initial training set 
consisted of 65 samples (5 samples × 13 classes) for KSC 
and 70 samples (5 samples × 14 classes) for BOT. The to-
tal number of iterations was fixed as 200 with ten-fold 
cross-validation and a batch of three samples with the 
most uncertainty was selected by applying Q in each  
iteration. The experiments were performed for ten trials 
with randomly chosen CL, CU and CT from the original 
dataset in each trial to reduce the effect of randomness. 
The overall accuracy was determined by averaging the 
accuracy of ten trials. Further, computation time was  
calculated by averaging the computation time of ten  
trials. Table 3 presents the characteristics and experimen-
tal parameters of KSC and BOT datasets. 
 A comprehensive comparison of the six systems formed 
by criss-cross combinations of two models (ELM, SVM) 
and three query strategies (RS, MV, EQB) resulted in six 
systems: (i) ELM–RS; (ii) ELM–MV; (iii) ELM–EQB 
(iv) SVM–RS; (v) SVM–MV and (vi) SVM–EQB. Expe-
riments were conducted using cpu@3.40 GHz, i3-4130 
and run on Matlab-2016. Active learning toolbox (ALTB)48 
consisting of multiclass SVM and implemented using 
torch 3 library, was used in the proposed AL technique. 

Results and performance analysis 

The performance analysis can be depicted-based on two 
parameters: (i) computation time and (ii) overall accuracy 
versus samples in the training set. The performance anal-
ysis was carried out for all six combinations: Figure 5



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 119, NO. 6, 25 SEPTEMBER 2020 939

 
 

Figure 4. Hyperspectral image (HIS) dataset. a, Kennedy Space Centre (KSC) dataset: (i) RBG image, (ii) ground-truth 
image and (iii) class label image. b, Botswana (BOT) dataset: (iv) RBG image, (v) ground-truth image and (vi) class label 
image. 

 
 

Table 1. Land-cover classes and the 
number of samples in Kennedy Space  
 Centre (KSC) 

Land-cover class No. of samples 
  
Water 927 
Willow  243 
Cattail Marsh 404 
CP/oak  252 
Slash pine 161 
Spartina marsh 520 
Hard-wood swamp 105 
Graminoid marsh 431 
Oak/broadleaf 229 
CP hammock 256 
Salt marsh 419 
Mud flats 503 
Scrub 761 
Total no. of samples 5211 

 

Table 2. Land-cover classes and the  
 number of samples in Botswana (BOT) 

Land-cover classes No. of samples 
 

Water 270 
Hippo grass 101 
Floodplain grasses 1 251 
Floodplain grasses 2 215 
Reeds 1 269 
Riparian 269 
Firescar 2 259 
Island interior 203 
Short mopane 181 
Acacia shrub-lands 248 
Acacia grasslands 305 
Acacia woodlands 314 
Mixed mopane 268 
Exposed soils 95 
Total no. of samples 3248 
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Table 3. Characteristics and experimental parameters of KSC and BOT datasets 

Characteristics KSC BOT 
  
No. of classes   13   14 
No. of samples 5211 3248 
Initial no. of samples under each class in CL    5    5 
Initial no. of training sets (CL)   65   70 
Batch size (P) in every iteration    3    3 
No. of iterations  200  200 
No. of samples in CL after 200 iterations  665  670 
No. of samples in CU after 200 iterations 1940  954 
No. of samples in the test set (CT) 2606 1624 
No. of committees in EQB (k)    4    4 
Size of band ranges for multiview 1–11, 12–31, 32–96, 97–130, 131–176 1–25, 26–61, 62–79, 80–110, 111–145 

 
Table 4. Classification accuracy of six systems for KSC and BOT 

 Classification accuracy 
 
Active learning (AL) approaches KSC BOT 
 
Extreme learning machine–random sampling (ELM–RS) 86.39 87.21 
ELM–multiview (MV) 88.60 89.41 
ELM–entropy query by bagging (EQB) 90.18 91.31 
Support vector machine (SVM)–RS 91.18 94.55 
SVM–MV 91.50 95.91 
SVM–EQB 92.87 95.93 

 

 
 

Figure 5. Classification accuracy versus number of samples in the training set: (a) KSC and (b) BOT. 
 
shows the learning curves of overall accuracy versus sam-
ples in the training set, which highlights the improvement 
in classification accuracy with increase in the number of 
samples in the training set. At each iteration, three uncer-
tainty samples were added to the training samples and 
hence, the number of samples in the training set increased 
with each iteration. With regard to classification accuracy 
(Figure 5), The EQB query strategy was better than the 
MV and RS query strategies for both datasets in all six 
systems, irrespective of the classifier. Table 4 shows the 
classification accuracy obtained by the averaging of 10 
trials after 200 iterations for the two datasets in all six 
systems. Table 4 demonstrates that the classification  
accuracy obtained using ELM-based AL models is 
slightly less compared to SVM-based AL model for both 
datasets, irrespective of the query strategy. However, the 
objective of this study is to achieve the desired classifica-

tion accuracy with reduced computation time. Figure 6 
shows the computation time for all six systems and both 
datasets. It shows that though the classification accuracy 
obtained using ELM-based AL model is slightly less 
compared to SVM-based AL model, computation time in 
the former is significantly less compared to the latter,  
irrespective of the query strategy. Figure 5 shows the  
superior performance of the EQB query strategy and Fig-
ure 6 demonstrates that ELM-based AL model outper-
forms with regard to computation time, while achieving 
the desired classification accuracy. The above two obser-
vations show that the ELM–EQB technique can be a bet-
ter option in HSI classification, where adequate 
classification accuracy can be achieved with significantly 
less computation time. 
 Table 5 highlights the advantages of the present sys-
tem, particularly on KSC and BOT. This benchmarking 
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Figure 6. Computation time of all six systems (ELM–random sam-
pling (RS), ELM–multiview (MV), ELM–EQB, SVM–RS, SVM–MV 
and the SVM–EQB) on two datasets: (a) KSC and (b) BOT. 
 
 
was carried out based on different significant AL parame-
ters. As observed in Table 5, all the existing studies have 
used SVM classifier for AL framework, except for Prad-
han et al.16,42, who have studied ELM classifier for the 
AL framework. Using SVM as a classifier for the AL 
framework, Tuia et al.20 studied the EQB query strategy 
to achieve 93.36% classification accuracy in 70 iterations 
on KSC. Demir et al.23 studied the multiclass level uncer-
tainty-enhanced clustering-based diversity (MCLU–
ECBD) to achieve 92.82% accuracy in 16 iterations with 
computational time of 240 sec on KSC. Di and Craw-
ford11 studied MV–AMD query strategy to achieve 
94.50% and 97.50% accuracy in 870 and 873 iterations 
on KSC and BOT respectively. Wan et al.33 studied 
collaborative active and semi-supervised learning 
(CASSL) to achieve 95.63% and 95.86% accuracy in 86 
and 87 iterations on KSC and BOT respectively, and have 
only depicted computational time of 1429.6 sec for KSC. 
Pasolli et al.23 used active-metric learning approach to 
achieve 96.20% accuracy in 40 iterations on KSC. Wang 
et al.49 have explored semi-supervised AL to achieve 
93.47% accuracy on KSC and 97.03% accuracy on BOT 
in 43 iterations. The spectral–spatial multicriteria AL  
approach was studied by Patra et al.34 on KSC, to achieve 
a classification accuracy of 99.71% in ten iterations with 
a computational time of 417 sec. In contrast, Pradhan et 
al.16,42 studied the ELM–AL framework with MV–AMD 
query strategy to achieve a classification accuracy of 
90.08% on KSC and 91.20% on BOT in 300 iterations 
with computation time of 38.89 sec and 27.18 sec respec-
tively. In the present study, ELM–AL with the EQB 
query strategy has been explored and found to achieve 
90.18% accuracy of classification on KSC and 91.31% on 
BOT in 200 iterations with computational time of 
119.88 sec and 88.87 sec respectively. As depicted in  
Table 5, only a few studies have analysed computation 
time. However, the present system has an advantage of 
providing adequate classification accuracy and also sig-
nificantly reduces computation time. 

Conclusion 

The present study was undertaken with the objective to 
evolve an AL approach for classification of HSI with less 
computation time, while maintaining adequate classifica-
tion accuracy. With this objective, this study presented an 
approach of AL to classify HSI using the EQB query 
strategy in the ELM classifier framework. Further, a 
comprehensive comparison has been made on six systems 
formed by criss-cross combinations of three query strate-
gies (RS, MV, EQB) and two classifiers (ELM, SVM). 
The study showed that adequate classification accuracy 
can be achieved with significantly less computation time  
using the ELM-based AL model compared to the state-of-
the-art SVM-based AL models, irrespective of the query 
strategies. In addition, experiments have demonstrated 
that the EQB query strategy provides better classification 
accuracy than RS and MV, irrespective of the classifiers 
used. Therefore, the encouraging outcome of this study is 
that the ELM–EQB AL approach is a good option for HSI 
classification. However, there is scope for the proposed 
model to improve its performance. The spectral informa-
tion of the image has only been used here. Therefore,  
performance of the ELM–AL approach can be improved 
by including spatial information6,34,41. Further, we intend 
to add diversity criteria in the future along with uncer-
tainty criteria in our model to improve its performance22. 
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