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A cascaded pushing displacement estimation  
approach for hydraulic powered roof  
support based on multi-segmental  
Kalman filter 
 
Lin Zhang*, Shang Feng, Minzhou Luo and Aimin Ji 
 
To tackle the problem of non-reusability of the magnetostrictive displacement sensor which is  
embedded in a pushing hydraulic cylinder, and improve the accuracy of pushing displacement sens-
ing for hydraulic powered roof support, the compact self-contained inertial sensor is utilized in push-
ing displacement measurement. The motion characteristics of pushing operation are re-considered, 
and multi-segmental Kalman filter (MS-KF) is proposed based on the motion characteristics. A 
cascaded framework is constructed for pushing displacement estimation, and key technologies such 
as orientation estimation, segmental recognition and MS-KF implementation are demonstrated. The 
experiment is elaborated and experimental results show that the proposed approach significantly 
reduces the cumulative error and proves to be practical and valuable. 
 
Keywords: Inertial sensor, hydraulic support, pushing displacement, Kalman filter. 
 
AS one of the most intelligent equipment in fully mecha-
nized coal mining working face, the hydraulic powered 
roof support (HPRS) works cooperatively with cutting 
machine (also known as shearer or mining machine) and 
scraper chain conveyor. Pushing link, which physically 
connects the scraper chain conveyor and hydraulic sup-
port, is utilized to push the scraper chain conveyor for-
ward or backward. During each working cycle, HPRS 
will cooperatively push the corresponding part of scraper 
conveyor from the current position to the next. HPRS will 
advance forward to be in alignment with the same base-
line. During the periodic pushing and advancing, pushing 
displacement of every hydraulic support is the key metric 
to percept the smoothness of scraper chain conveyor. Due 
to poor work environment, different geological conditions 
and loss reduction of hydraulic emulsion system, there 
are still challenges to measure pushing displacement at 
present. 
 As a traditional solution, magnetostrictive displace-
ment sensor (MDS) is utilized to measure pushing dis-
placement through rough estimation. To protect the 

sensor from being damaged when exposed to complicated 
working space and to improve reusability, MDS has to be 
embedded into the pushing hydraulic cylinder (PHC). 
However, it does not guarantee sensing accuracy. The  
actual pushing displacement is the moving distance of 
pushing link, while sensing displacement is the length of 
moving piston, which means there is a deviation between 
actual pushing displacement and sensing displacement. 
Thus, pushing displacement must be obtained via simply 
trigonometry operator or must directly use sensing dis-
placement as an approximate value. However, there are 
some drawbacks in this approach. First, MDS of hydrau-
lic support is non-reusable due to cumbersome mechani-
cal structure, unmaintainable installation of sensor, and 
harsh underground work environment. As a consequence, 
this approach will not work once the MDS is broken, and 
the broken MDS cannot be replaced until the whole min-
ing process is finished. Secondly, if pushing distance is 
indirectly approximated via pushing length of PHC, ob-
viously, the approximation error is inevitable. Finally, if 
pushing distance is calculated via trigonometry transfor-
mation, then the calculation error may vary significantly 
due to different roughness of the floor. Thus, sensing  
error of pushing displacement may be rather large. 
 Aiming at the above problems, the compact self-
contained inertial sensor provides potential approach for 
pushing displacement measurement. In order to reduce 
estimation error, a cascaded pushing displacement esti-
mation framework based on multi-segmental Kalman  



GENERAL ARTICLES 
 

CURRENT SCIENCE, VOL. 117, NO. 10, 25 NOVEMBER 2019 1586

filter (MS-KF) is proposed. Key technologies of the  
proposed framework, such as orientation estimation, 
segmental recognition and MS-KF implementation are 
demonstrated as well. 

Literature review 

Recent research works relevant to this study focus on 
three topics: displacement measurement, inertial sensing 
approach and Kalman filter. In this section, we list and 
summarize the related literature. 

Displacement measurement 

Since displacement is valuable information for analysing 
structural behaviour, motion characteristics and mechanical 
properties, displacement measurement has been applied 
in various science scenarios, structure engineering1,  
robotics2, and medical science3, etc. Among these, the 
most applicable field is structure engineering. Structure 
health monitoring applications all begin with measuring 
the dynamic response of structures, but displacement 
measurement has been limited by the difficulty in requir-
ing a fixed reference point, high cost and low accuracy. 
Yoon et al.4, presented a framework to achieve absolute 
displacement of a structure with a video taken from an 
unmanned aerial system using a three-step phased ap-
proach. Aimed at long span bridge structures, Soman et 
al.5 presented a feature extraction-level data fusion-based 
damage isolation strategy using multi-metric sensing; 
both strain and displacement data were combined after 
performing coordinate transformation. Considering the 
disadvantages of traditional displacement sensors such as 
instrumentation cost, installation efforts and measurement 
capacity in terms of frequency range and spatial resolu-
tion, more comprehensive works from the perspective  
of vision-based displacement measurement have been  
reviewed by Xu and Brownjohn6. In Europe, the dis-
placement estimation framework is a key part of forestry 
unmanned aerial vehicles (UAVs); both aerial imagery 
and GPS information can be utilized for post-harvest soil 
displacement estimation7. In order to estimate soil dis-
placement from timber extraction trails in steep terrain, 
an unmanned aircraft is used for 3D scanning to generate 
a detailed post-harvest terrain model8. Displacement mea-
surement is widely researched in materials science as 
well Rizzello et al. focused on self-sensing of displace-
ment for dielectric elastomers, and applied the estimated 
displacement in closed-loop control9–11. Tessler et al.12, 
proposed inverse finite element method to reconstruct the 
displacement field of a shell structure which undergoes 
large deformations using discreet strain measurements as 
the prescribed data. Besides, displacement measurement 
is also a great challenge for tissue motion estimation13, 
ultrasound elastography14, electrode displacement elasto-
graphy15, etc. 

Inertial sensing approach 

There are other displacement sensors such as wheel odo-
meter, INS, GPS/GNSS, ultrasonic sensor, laser sensor 
and optical camera (Table 1)16. However, these sensors 
are difficult to use due to complicated working condi-
tions. On the one hand, the measuring area, which can be 
used for sensor mounting, will be occupied frequently by 
human beings, because this is the only available area for 
the operators. On the other hand, scattered coal block will 
fly into this area occasionally. Thus, this area is totally 
exposed to danger, both for the sensors and human be-
ings. Thus, inertial sensors could be appropriate for dis-
placement sensing in this case. As described earlier, the 
inertial sensor is suitable for this scenario due to the  
limited working space. The sensor is frequently used for 
navigation17, in robotics18 and motion tracking19. In  
order to estimate the full state of the flexible joint mani-
pulators, a nonlinear observer under the Lipschitz condi-
tion of nonlinear stiffness is proposed and algebraic 
Riccati equations are applied to choose the gain of the 
proposed observer20. Comparative experimental results 
verify the effectiveness of the proposed method. For more 
complicated and precise requirement, simultaneous loca-
lization and mapping (SLAM) and laser scan matcher 
(LSM) can be improved with the use of inertia sensor and 
kinematic velocity information21. Inertial sensors provide 
a possible solution since they are self-contained, relative-
ly low cost and can be easily mounted on the machine 
structure. While the inherent limitation accumulated 
growth of error, with time, measured velocity and posi-
tion need more efficient and precise process models or 
algorithms22. To achieve this goal, researchers use other 
compensate sensors to remove the drift during long-term 
measurement. Inertial sensors, ultrasonic sensors and 
magnetometers are combined together to estimate motion 
state using the extended Kalman filter for data fusion23. 
The results show that the accumulated errors of inertial 
sensors are reduced by ultrasonic sensors and magneto-
meters, and extended Kalman filter (EKF)-improves the 
accuracy of orientation and position measurements. 

Kalman filter 

The inertial sensor provides a potential approach for 
pushing displacement estimation due to its advantages 
such as lightweight, low power consumption, portability 
and being self-contained. Although it is successfully used 
in many fields, displacement estimation based on inertial 
sensor is still a great challenge due to the cumulative  
errors24. Thus, practical usability of the inertial sensor for 
displacement estimation requires better signal processing 
algorithms before it can be used in extreme working con-
dition. As a state-space model-based linear filter25, the 
Kalman filter is frequently used in inertial information 
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Table 1. Comparison of commonly used sensors 

Sensor/technology Merits Demerits 
 

Wheel odometry Simple computation, short-term accuracy, high  Position drift 
   sampling rate and low-cost solution Error accumulation over time 
 
INS Provides both position and orientation. Position drift 
  Not subject to interference outages Long-term drift errors 
 
GPS/GNSS Provides absolute position with known value of  Unavailable in indoor, underwater, underground 
   error, No error accumulation over time  and in closed areas 
 
Ultrasonic sensor Provides a scalar displacement measurement from  Reflection of signal wave 
   sensor to object. Also, provides inexpensive Signal interference 
   solution Low angular resolution and scan rate 
 
Laser sensor High accuracy and scan rate. Provides the distance  Reflection of signal wave 
   to a single point or an array of distances Expensive solution 
 
Optical camera Images store huge meaningful information.  Requires image-processing and data extraction 
   Provides high localization accuracy and   techniques 
   inexpensive solution High computational cost 

 
 
processing with uncertainty problems26, including posi-
tion estimation27 as well as rotation estimation28. For non-
linear problems, researchers also proposed some mutation 
of a Kalman filter, such as extended Kalman filter29,  
unscented Kalman filter30, etc. Recently, Kalman filter 
has also been used in intelligent computation and  
information fusion through distributed or parallel  
approach31,32. In addition, Kalman filter contributes to 
magnetometer calibration33, moving object tracking34, 
and satellite attitude determination35. However, the esti-
mation performance of Kalman filter is greatly influenced 
by the selection of processing noise covariance Q and ob-
servation noise covariance R36. Thus, tuning method of 
the covariance should be applied to obtain better estima-
tion performance. Optimization algorithms play an  
important role for tuning parameters of Kalman filter. 
Recently, some interesting and efficient nature-inspired 
optimization algorithms have been proposed for parameter 
tuning. In 2012, krill herd (KH) was proposed by Gan-
domi and Alavi37. Based on the innovation, improved KH 
algorithms are successively being developed38,39. These 
algorithms are efficient and flexible, and can be enhanced 
either by internal improvement, such as introducing new 
migration operator40 and new information exchange 
process41, or by combining other algorithms together, 
such as quantum-behaved particle swarm algorithms42 
and cuckoo search algorithms43. Monarch butterfly opti-
mization (MBO)44 and MBO-based algorithms45 are  
recently developed meta-heuristic algorithms which simu-
late the migration of monarch butterflies. Similar algo-
rithms like moth search algorithm46, earthworm 
optimization algorithm47, cuckoo search algorithm48, bat 
algorithm49 and firefly algorithm50 also simulate the natu-
ral processes and contribute to intelligent optimization 
algorithms. 

Discussion 

Although the above-mentioned studies are highly valua-
ble, the problem of pushing displacement estimation on 
mining face has rarely been researched due to existing 
challenges regarding measurement approach in practical 
applications. Here, we propose a cascaded displacement 
estimation approach to estimate the pushing length of 
PHC without the use of non-reusable MDS. We also com-
bine this approach with multi-segmental Kalman filter to 
estimate pushing displacement in different signal segments. 

Proposed estimation approach 

Description of pushing operation 

Generally, movement of hydraulic support contains two 
parts: pushing scraper chain conveyor forward (pushing) 
and advancing itself forward (advancing). The combina-
tion of pushing and advancing constitutes a periodic 
movement. First, hydraulic support utilizes pushing link 
to push the scraper chain conveyor forward (hydraulic 
support body is motionless). Then the pushing link will 
pull the whole body of hydraulic support forward (scraper 
chain conveyor is motionless). With such a periodic 
movement, the chain conveyor can be pushed forward 
step by step. The translation along the y-axis of the sensor 
frame of reference is the main feature of the pushing 
movement. Due to the roughfloor, rotations around x-, y- 
and z-axis will cause some acceleration fluctuations. The 
analysis is based on the following hypothesis: (i) The 
density of emulsified liquid is stable and inner diameter 
of the pipeline is constant. (ii) All hydraulic supports are 
in good condition with constant flow rate; there is no  
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leakage of any emulsified liquid. (iii) Hydraulic pump 
provides enough pressure to pushing and advancing. 
 Hydraulic support extends the piston out or withdraws 
the piston back while pushing; both acceleration and  
angular rate show significant response to movement. The 
acceleration shows an increase in the beginning and  
decrease at the end, while it will present a totally inverse 
result when advancing. However, their magnitudes are 
different due to the fact that PHC with floating piston 
outputs different force magnitude when extending piston 
out or withdrawing piston back, which leads to varying 
velocity between pushing and advancing. The curve of 
displacement seems to be a tilt trapezoid. 
 Since flow rate outlet of the hydraulic pump for PHC is 
constant, based on the listed hypnosis, moving velocity of 
the piston should be constant as well. However, when 
pushing and advancing at the starting point, the accelera-
tion fluctuates significantly and increases rapidly to an 
excepted velocity. The velocity should be constant until it 
reaches the end point according to hypotheses (2) and (3). 
The angular rate also presents similar features, which can 
be aid for recognition of pushing and advancing. Based 
on the description, traditional displacement estimation 
approach can be replaced with the proposed method 
which utilizes different estimation model for constant 
segment and variational segment separately. 

Framework of the proposed approach 

The principle of the proposed approach for pushing dis-
placement estimation is dividing the inertial signal into 
segments – variational velocity segment (VVS) and con-
stant velocity segment (CVS). The signals beyond these 
segments should be ignored theoretically. Thus, signals in 
other segments will be applied with zero velocity update 
(ZUPT) and errors in current periodic pushing operation 
will never be transferred to the next, which will clear  
cumulative errors effectively. Figure 1 shows the frame-
work of the proposed approach. The inertial sensor  
information is filtered with wavelet-based de-trending 
and de-noising filter, which help in removing baseline 
drift and noise, and reveal fluctuation. The result will be 
used in final estimation based on the proposed MS-KF. 
 The input signal, filtered angular rate, is processed to 
remove the influence of gravity on acceleration using the 
orientation estimation. By combining control chart-based 
change-point detection and k-means clustering, the origi-
nal inertial data can be segmented and recognized as 
segments (VVS and CVS). For these segments, displace-
ment can be estimated separately by a proposed cascaded 
segmental estimation algorithm which contains variational 
velocity process method (VVM), constant velocity 
process method (CVM) and ZUPT. Through repeating the 
periodic processes with corresponding models: ‘VVM → 
CVM → VVM → ZUPT’, displacement in a period of 
pushing or advancing can be obtained. 

Key techniques 

Wavelet-based de-trending and de-noising 

Before recognizing starting and ending points of VVS, 
wavelet transformation method is applied to perfectly  
remove baseline drift and reveal data features. This sec-
tion introduces notations related to wavelet transforma-
tion. Let ψ(t) be the wavelet function, φ(t) be the scaling 
function of a multi-resolution analysis {hn} the low-pass 
filter and {gn} the high-pass filter. The acceleration sig-
nal is indicated as Y = {yn}, n = 0, 1,…, N – 1; generally,  
parameter N = 2j. The scaling function and wavelet func-
tion are defined as follows 
 
 /2 2

, ( ) 2 (2 ), ( , ) ,j j
j k t t k j k Zφ φ −= − ∈  

 
 /2 2

, ( ) 2 (2 ), ( , ) .j j
j k t t k j k Zψ ψ −= − ∈  (1) 

 
The wavelet coefficients of Y can be calculated as follows 
 
 0 , 0,..., 1,k ksy y k N= = −  
 
 1 1

2 , 0,..., 2 ,j j j
n k nk n

sy g sy k N+ − −
−= =∑  

 
 1 1

2d  0,..., 2 .j j j
n k nk n

y h sy k N+ − −
−= =∑  (2) 

 
The acceleration signal can be reconstructed as 
 

 
0

0

0, ,( ) ( ) ( ) d ( ) ( ).j j k j j k
k j j k

f x sy k t y k tφ ψ
∞

=

= +∑ ∑∑  (3) 

 
Since low frequency baseline shift of acceleration signifi-
cantly increases the estimation error, this study removes 
low-frequency component that is decomposed at level 8. 
Once the acceleration signal is obtained, the de-trended 
acceleration can be used for further processing. Except 
the low-frequency component in acceleration, there is 
some other high-frequency noise. By applying a hard 
threshold, these components which are decomposed at  
levels 1 and 2 can be removed from the de-trended  
signal. 

Cascaded segmental estimation algorithm 

The filtered signal can be applied with cascaded segmen-
tal estimation algorithm to retrieve displacement. As 
shown in Figure 5, the proposed algorithm is divided into 
three cascaded sections; orientation estimation, segment 
recognition and MS-KF. In order to describe the proposed 
estimation algorithm, some essential parameters are listed 
in Table 2. 
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Figure 1. Framework of the proposed approach. 
 
 

Table 2. Essential parameters 

Symbol Representation Symbol Representation 
 

L Local (sensor) frame    Lω Measured angular rate 
G Earth frame    L

G q  Orientation quaternion of the global frame G  
     relative to the local frame L 
La Measured acceleration    Δt Sampling time period 
Ga True gravitational acceleration    Ggr True gravity vector Ggr = [0, 0, g]T 
Constant velocity segment Constant velocity segment Variational velocity  Variational velocity segment 
 (CVS)   segment (VVS)  
Constant velocity process  Constant velocity process model Variational velocity Variational velocity process model 
  method (CVM)   process method (VVM)  

 
 
Orientation estimation: Quaternion is widely used in 
IMU-based MARG system due to the convenient orienta-
tion representation. Here we use quaternion-based repre-

sentation to estimate orientation. Angular velocity from 
the gyroscope is the principle information source, with 
quaternion transformation and vector integration. The 
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predicted orientation quaternion can be described as fol-
lows 
 

 , 1
1 ,
2

G G
L L L

w t t tq q ω−= ⊗  

 
 , , 1 , .G G G

L L L
w t w t w tq q q t−= + Δ  (4) 

 
Using the output of prediction, raw acceleration in local 
(sensor) frame L

tα  is rotated into the global frame. 
 
 ,( ) .G

G L L
w t tg R q α′ =  (5) 

 
Theoretically, the results should satisfy the equation 
 
 acc( ) ,G G

rR q g g ′Δ =  (6) 
 
where R(q) is the rotation matrix transferred from orienta-
tion quaternion, and q = [q0, q1, q2, q3]. 
 
 ( )R q =  
 
 

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 3 2 0 1 0 1 2 3

2( ) 2( )

2( ) 2( ) .

2( ) 2( )

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤+ − − − +
⎢ ⎥

+ − + − −⎢ ⎥
⎢ ⎥

− + − − +⎢ ⎥⎣ ⎦

 

 
 (7) 
 
However, there is an algebraic deviation between the  
predicted results and the true gravity vector. The small 
deviation is used to correct process error. The deviation 
quaternion acc ,q̂Δ  which is obtained using SLERP-based 
quaternion interpolation, will be used for later orientation 
estimation correction. Thus, the final orientation quater-
nion can be calculated as follows. 
 
 acc .ˆG G

L L
t wq q q= ⊗Δ  (8) 

 
Acceleration can be used to calculate velocity and dis-
placement via integration and second integration sepa-
rately. 
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0
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d

t
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a

τ
τ

τ

τ

τ

⎡ ⎤
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∫
∫

 (9) 

 
However, acceleration of rotated inertial sensor is  
affected by orientation, and produces a differential caused 
by gravity. In order to tackle this problem, we use the 
above estimated orientation quaternion to remove the 

gravity influence on acceleration. The orientation quater-
nion is used for rotating acceleration from local (sensor) 
frame of reference to the global reference frame, which 
yields acceleration without gravity. 
 
 , ( ) .G

G L L G
l t t t rg R q gα= −  (10) 

 
The filtered signal will be segmented, and estimated  
using MS-KF. During estimation, since the signal in CVS 
has feature of zero acceleration, CVM will be applied to 
estimation model. For those segments outside the cycle of 
‘VVM → CVM → VVM’, the measurement of velocity 
can be reset to zero, which is famous as zero velocity up-
date (ZUPT), and pushing displacement estimation can be 
discarded to reduce the drift error. 
 
Segment recognition: For segment recognition we  
propose a method combining control chart-based change-
point detection and k-means clustering method together to 
recognize VVS and CVS. 
 Control chart-based change-point detection is an effi-
cient method in automation and industrial quality control, 
though new approaches based on neuro network30, neural 
fuzzy31 and Bayesian32 have been proposed in recent 
years. The present study applies Shewhart individuals 
control chart to find the mutation points and locations 
which indicate the sudden changes in acceleration. 
 In comparison to the rational subgroup control chart, 
the individuals control chart does not have to wait for the 
next acceleration sample and speeds up the detection 
process. The basic schema of Shewhart individuals con-
trol chart is detecting location with non-normal probability 
distribution. For a range of acceleration samples, includ-
ing m samples, the moving individuals average centre 
line, upper control limit and lower control limit are  
obtained from the following 
 

 1
2

1 ,
1

m

i i
i

y y y
m −

=

= −
− ∑  

 

 
2

3UCL ,y y
d n

= +  

 

 
2

3LCL ,y y
d n

= −  (11) 

 
where n is the sample size and d2 is a function of n. Data 
beyond control limits should be recognized as a set of 
change points and indicated as 
 
 { | [LCL, UCL]}, 0,1,..., .i i iP p y y i m= = ∉ =  (12) 
 
The change-point set contains all the change points which 
should be applied with Kalman-based estimation to get 
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the variational velocity. However, it does not work effi-
ciently for a single discrete acceleration sample. Thus,  
adjacent change points with small time interval among 
the cluster members are grouped as a segment. To recog-
nize the different segments, these indexes need to be clus-
tered into several types. K-means clustering method is 
adopted to effectively solve this problem. 
 Let idx denote the index of change points; and 
idx = {i | pi ∈ P}. Since there are four different segments 
during a period of movement for PHC, thus k = 4 and the 
segment should be indicated as {sk, k = 1, 2,…, 4}. The 
change-point set can be grouped into k segments by seek-
ing minimal value of objective function by the following 
two steps 
 
 ( ) ( ) 2 ( ) 2{ :|| || || || ,t t t

i m m i m js idx idx idxμ μ= − ≤ −  

     , 1 },j j k∀ ≤ ≤   
 

 
( )

( 1)
( )
1 ,

| | t
m i

t
i mt

i idx s

idx
s

μ +

∈

= ∑  (13) 

 
where ( )t

iμ  is the mean of set i at step t. These segments 
are classified into VVS (where acceleration significantly 
fluctuates) and CVS (no acceleration change). Accelera-
tion in VVS and CVS will be applied with VVM and 
CVM respectively, to retrieve the displacement. 
 
MS-KF implementation: For different segments, differ-
ent state space representations are utilized to eliminate 
cumulative error when estimating pushing displacement. 
In the case of VVS, the position xi and velocity vt of the 
hydraulic support are constituted as state vectors in state 
space representation. 
 

 

2
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 (14) 

 
This is a variational velocity model (VVM), especially 
for VVS, by simple algebra operation. A more general 
format is obtained as follows 
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With a comparison between eq. (2) and , 1 ,e t t e tX F X+ = +  

,t t tG μ υ+  parameters are listed as below 

 Xe,t is the state vector; 
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μt is the constant control input vector; and  
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.
0
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⎡ ⎤
⎢ ⎥= − Δ⎢ ⎥
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Ft is the state transformation matrix; 
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Gt is the control input matrix; here it is an identity matrix. 

tυ  is zero mean white process noise with covariance 
( ) .t t tE Qυ υ′ =  

 In our system, to measure the exact distance of push 
operation, displacement sensor was mounted on the push-
ing link. The measurement equation is 
 
 1 , 1 1,t t e t tZ H X w+ + += +  (16) 

 
where Ht = [0 0 I] is the observation matrix and wi+1 is  
zero mean white measurement noise with known  
covariance 1 1 1( ) .t i tE w w R+ + +′ =  The final estimation can 
be obtained via recursions as follows 
 
 (1) Initialize state: Xe,0 and P0. 

 (2) Prior estimate: , 1 , .e t t e t t tX F X G μ−
+ = +  

 (3) Calculate prior mean square error: 
  1tP−

+ = .T
t t t tF P F Q+  

 (4) Calculate Kalman filter gain: 
  (T T

t t t t t tK P H H P H− −= 1)tR −+ . 

 (5) Posterior estimate: 
  , 1 , 1 1 1 1(e t e t t t tX X K Z H−

+ + + + += + − , 1).e tX −
+  

 (6) Calculate posterior mean square error: 
  1 1 1 1( ) .t t t tP I K H P−

+ + + += −  

 (7) Return back to step (2) until all the observations  
  have been estimated. 
 
The above VVM displacement estimation only works 
during VVS. For CVS, constant velocity model (CVM) is 
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Figure 2. Experimental equipment and layout. 
 

 
 

Table 3. Experimental configuration and parameters 

Index Equipment Information 
 

1 Hydraulic support ZY9000/15/28D 
2 Displacement sensor PR-500 mm 
3 Data acquisition card Smacq USB-4432 
4 IMU sensor ADIS 16448 

 
 

applied top process equitation of Kalman filter and is cal-
culated as 
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 (17) 
 
For different segments, the initial states are different. 
Generally, the initial state of VVS when accelerating 
should be Xe,0 = 0, P0 = 0, while for segments when dece-
lerating should be Xe,0 = Xi,t, P0 = 0. Thus, the real dis-
placement is obtained as follows 

 tX =  

, ,0 0

,

, ,0 , 0

| { 0, 0},        Mean({ }) 0, VVS,
                      CVS
|{ , 0},    Mean({ }) 0, VVS.

e t e i i

i t i

e t e i t i i

X X P y y
X y
X X X P y y

⎧ = = > ∈
⎪ ∈⎨
⎪ = = < ∈⎩

 

 (18) 

Experiment and analysis 

The experiment was conducted using hydraulic support 
with a PHC. As shown in Figure 2, since the base of  
hydraulic support remains stationary during pushing  
operation, the inertial sensor was mounted on the PHC  
to collect inertial information. In order to obtain the  
genuine pushing displacement, a high-speed acquisition 
device and displacement sensor were utilized to collect 
acceleration data and verify the real pushing displace-
ment. 
 Table 3 provides the details of the experiment configu-
ration. 

Wavelet-based de-trending and de-noising 

Acceleration on y-axis is the principle component which 
contributes to pushing, and it presents distinct acceleration 
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Figure 3. Signal de-trending and de-noising. a, Raw acceleration and displacement with noise; b, Raw acceleration and 
displacement with baseline drift; c, Baseline drift and noise of acceleration Y; d, Baseline drift and noise of acceleration X; 
e, Acceleration and displacement after filtering; f, Acceleration and displacement after filtering. 

 

 
Table 4. Result of constant speed test and filtering results 

 Expected Measured  
Segment speed (mm/s) speed (mm/s) Error (%) 
 

Accelerating 15.00 15.02 0.13 
Deaccelerating 35.00 35.19 0.54 

 

 
and decelerating features. However, the x- and y-axes  
also represent significant vibration in variational speed 
segment, as shown in Figure 3 a and b, which represents 
acceleration along the y-axis and the x-axis respectively, 
and contains high frequency noise and significant base-
line drift. 
 The raw signal was decomposed at level 7 using  
Coiflet family wavelet; both the high-frequency noise and 
baseline drift were totally removed. Figure 3 c and d 
shows the removed baseline drift and noise, while Figure 
3 e and f shows the filtered results. From the result, the 
magnitudes are found different between extending piston 
out and withdrawing piston back due to the fact that 
floating hydraulic cylinder is different. In the experiment, 
the sampling rate was 1 kHz; when extending the piston 
out, the velocity was 14.5339 mm/s, while it was 
35.1879 mm/s when withdrawing the piston back. Table 4 
shows details of the results. 

Segment recognition results 

Based on the filtered data, Shewhart individuals control 
chart was applied to find abnormal points in the dataset. 

In Figure 4, the recognition of VVS and CVS is 
represented. The value of acceleration should be limited 
within the range (LCL, UCL) when accelerating or dece-
lerating. In this experiment, there is an exception; as 
shown in Figure 4, a vital vibration area occurred before 
the first deceleration. It should be included in VVS  
since it affects velocity estimation along the y-axis. Thus, 
the change points are those beyond limitations (Figure 
4 a). 
 Based on these change points, k-means clustering  
method was applied to the processed data with k = 4, and 
k = 5 (Figure 4 b and c). The indices of all the change 
points clustered into k groups. To process estimation 
more precisely, k can be increased to a proper value.  
As shown in this experiment, significant vibration  
before pushing is stopped and it causes a vital fluctuation 
of acceleration, thus k = 5 can be set. The larger  
the k value set, the more the details available for estima-
tion.  

Pushing displacement estimation using MS-KF 

The recognized segments can be applied with different 
methods to retrieve displacement. As an example, for 
VVS, let k = 4. We estimate the segment with variational 
velocity (e.g. start pushing) and the segment between 
start pushing and stop pushing with constant velocity 
(e.g. pushing). 
 Figure 5 a–c shows the estimated acceleration, velocity 
and displacement respectively. Before pushing, there is a 
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Figure 4. Estimation and integration recognition. a, Change-point detection; b, k-means clustering (k = 5); c, k-means 
clustering (k = 4). 

 
 

 
 

Figure 5. Estimation results (variational velocity). a, Estimated acceleration in segment 1; b, Estimated velocity in seg-
ment 1; c, Estimated position in segment 1; d, Estimation error. 
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Figure 6. Estimation results (constant velocity). a, Estimated acceleration in segment 2; b, Estimated velocity in seg-
ment 2; c, Estimated position in segment 2; d, Estimation error. 
 

 
Table 5. Error analysis result 

 MSE/sec 
 

Segment Kalman-based estimation Direct integration 
 

VVS 1.4615 1.6859 
CVS 0.445 0.637 

 
 

process of acceleration to a specified velocity which 
presents a significant acceleration burst (Figure 5 a). Due 
to elastic characteristics of hydraulic liquid, the accelera-
tion will show a fluctuation between zeros. With Kalman 
filter, both velocity and displacement are estimated (Fig-
ure 5 b and c) respectively. Velocity will be stable after 
an intense oscillation, with the final velocity of 
15.02 mm/s. However the displacement continues grow-
ing to 5.69 mm approximately. These results should be 
the initial state for the next estimation segment. 
 The next estimation state is the pushing segment with  
constant velocity (CVS) and should be initiated with [y0,  
v0, a0]T = [5.69, 15.02, 0]T. The estimated acceleration 
(Figure 6 a), oscillates around zero, which corresponds to 
the theoretical expectation. The velocity (Figure 6 b) fluc-

tuates around a certain value (varies from 14.59  to 
18.26 mm/s, with mean of 16.06 mm/s). The displace-
ment (Figure 6 c), continuously increases to 397.8 mm. 
 From the two estimation examples, the green lines in 
Figures 5 and 6 of velocity and displacement estimation 
represent velocity and displacement integrated directly 
from raw acceleration respectively. Evidently, both the 
integrated velocity and displacement show large accumu-
lated error as time increases. The errors are shown in 
Figures 5 d and 6 d for these two typical experiments re-
spectively. In order to consider time-based accumulated 
error, the mean square error per second (MSE/sec) is used 
for performance comparison (Table 5). 
 From Table 5, during the same time interval, MS-KF-
based estimation for push hydraulic cylinder is better 
than direct integration, and the accumulated error is no 
more than 2 mm/sec which is capable of monitoring 
pushing displacement under harsh environments. 

Conclusion and future work 

To solve the problem of non-reusable displacement sensor, 
a cascaded pushing displacement estimation approach has 
been proposed. In this approach, we utilize a combination 
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of wavelet-based de-trending and de-noising filter, 
change-point detection and k-means clustering-based 
segment recognition and pushing displacement estimation 
using MS-KF. Examples of the proposed approach have 
been elaborated, and the results discussed. By applying 
ZUPT in MS-KF, the cumulative error can be removed 
before starting the next pushing operation. As a result, the 
errors are reduced significantly (no more than 2 mm/s) in 
a periodic pushing operation. Thus the proposed approach 
is feasible and acceptable in industrial scenario under 
harsh environments. Theoretically, the proposed MS-KF 
can be used in other applications with periodic changes. 
Thus, this approach can be utilized in all scenarios with 
piston movement. 
 Compared to traditional measurement method for  
hydraulic support, this approach provides practical iner-
tial-based displacement estimation. Although the cumula-
tive error is acceptable for hydraulic support, error 
elimination is still a challenge for more accurate working 
environment. Our future work will focus on the develop-
ment of better error elimination algorithms with the help 
of computational intelligence algorithms, and more com-
parisons with other intelligent algorithms are necessary.  
Finally, this approach can be applied in other similar sce-
narios. 
 
Conflict of interest: The authors declare no conflict of 
interest. 
 
 

1. Jeon, J. and Lee, H., Development of displacement estimation  
method of girder bridges using measured strain signal induced by 
vehicular loads. Eng. Struct., 2019, 186, 203–215. 

2. Pfister, S. T., Kriechbaum, K. L., Roumeliotis, S. I. and Burdick, 
J. W., Weighted range sensor matching algorithms for mobile  
robot displacement estimation. In Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation, Washington DC, 
USA, 7 August 2002, pp. 1667–1674. 

3. Slimi, T., Moussa, I. M., Kraiem, T. and Mahjoubi, H., Improve-
ment of displacement estimation of breast tissue in ultrasound 
elastography using the monogenic signal. BioMed. Eng., 2017, 
16(1), 19. 

4. Yoon, H., Shin, J. and Spencer, B. F., Structural displacement 
measurement using an unmanned aerial system. Comput.-Aided 
Civ. Infrastruct. Eng., 2018, 33(3), 183–192. 

5. Soman, R., Kyriakides, M., Onoufriou, T. and Ostachowicz, W., 
Numerical evaluation of multi-metric data fusion based structural 
health monitoring of long span bridge structures. Struct. Infra-
struct. Eng., 2018, 14(6), 673–684. 

6. Xu, Y. and Brownjohn, J. M. W., Review of machine-vision based 
methodologies for displacement measurement in civil structures. 
J. Civil Struct. Health Monit., 2018, 8, 91–110. 

7. Torresan, C. et al., Forestry applications of UAVs in Europe: a  
review. Int. J. Remote Sensing, 2017, 38(8–10), 2427–2447. 

8. Pierzchała, M., Talbot, B. and Astrup, R., Estimating soil dis-
placement from timber extraction trails in steep terrain: applica-
tion of an unmanned aircraft for 3D modelling. Forests, 2014, 
5(6), 1212–1223. 

9. Rizzello, G., Naso, D., York, A. and Seelecke, S., Closed loop 
control of dielectric elastomer actuators based on self-sensing dis-
placement feedback. Smart Mater. Struct., 2016, 25(3), 35034. 

10. Rizzello, G., Naso, D., York, A. and Seelecke, S., A self-sensing 
approach for dielectric elastomer actuators based on online estima-
tion algorithms. IEEE/ASME Trans. Mechatronics, 2017, 22(2), 
728–738. 

11. Rizzello, G., Fugaro, F., Naso, D. and Seelecke, S., Simultaneous 
Self-sensing of displacement and force for soft dielectric elasto-
mer actuators. IEEE Robot. Autom. Lett., 2018, 3(2), 1230–1236. 

12. Tessler, A., Roy, R., Esposito, M., Surace, C. and Gherlone, M., 
Shape sensing of plate and shell structures undergoing large dis-
placements using the inverse finite element method. Shock Vibra., 
2018, 2018, 1–8. 

13. Golemati, S., Gastounioti, A. and Nikita, K. S., Ultrasound-image-
based cardiovascular tissue motion estimation. IEEE Rev. Biomed. 
Eng., 2016, 9, 208–218. 

14. Mirzaei, M., Asif, A., Fortin, M. and Rivaza, H., Spatio-temporal 
normalized cross-correlation for estimation of the displacement 
field in ultrasound elastography, arXiv preprint. 2018, pp. 1804–
5305. 

15. Pohlman, R. M. et al., Comparison of displacement tracking algo-
rithms for in vivo electrode displacement elastography. Ultrasound 
Med. Biol., 2019, 45(1), 218–232. 

16. Aqel, M. O. A., Marhaban, M. H., Saripan, M. I. and Ismail, N. 
B., Review of visual odometry: types, approaches, challenges, and 
applications. SpringerPlus, 2016, 5(1). 

17. Ryu, J. H., Gankhuyag, G. and Chong, K. T., Navigation system 
heading and position accuracy improvement through GPS and INS 
data fusion. J. Sensors, 2016, 2016. 

18. Berrabah, S. A., Sahli, H. and Baudoin, Y., Visual-based simulta-
neous localization and mapping and global positioning system cor-
rection for geo-localization of a mobile robot. Meas. Sci. Technol., 
2011, 22, 124003–124003. 

19. Olivares, A., Górriz, J. M., Ramírez, J. and Olivares, G., Accurate 
human limb angle measurement: sensor fusion through Kalman, 
least mean squares and recursive least-squares adaptive filtering. 
Meas. Sci. Technol., 2010, 22, 025801–025801. 

20. Nam, K., Lee, S., Kuc, T. and Kim, H., Position and velocity  
estimation for two-inertia system with nonlinear stiffness-based on 
acceleration sensor. Sensors (Basel, Switzerland), 2015, 16. 

21. Cakmak, F., Uslu, E., Yavuz, S., Amasyali, M. F., Balcilar, M. 
and Altuntas, N., Using range and inertia sensors for trajectory 
and pose estimation. In Signal Processing and Communications 
Applications Conference, Trabzon, Turkey, 12 June 2014, pp. 
506–509. 

22. Gao, J., Webb, P. and Gindy, N., Investigation of an inertial-
sensor-based dynamic position measurement system for a parallel 
kinematic machine. Trans. Inst. Meas. Control, 2004, 26, 293–
310. 

23. Zhao, H. and Wang, Z., Motion measurement using inertial  
sensors, ultrasonic sensors, and magnetometers with extended 
Kalman filter for data fusion. IEEE Sensors J., 2012, 12, 943–953. 

24. Coyte, J. L., Stirling, D., Ros, M., Du, H. and Gray, A., Displace-
ment profile estimation using low cost inertial motion sensors with 
applications to sporting and rehabilitation exercises. In 2013 
IEEE/ASME International Conference on Advanced Intelligent 
Mechatronics: Mechatronics for Human Wellbeing, Wollongong, 
NSW, Australia, 2013, pp. 1290–1295. 

25. Kalman, R. E., A new approach to linear filtering and prediction 
problems. ASME Trans., J. Basic Eng., 1960, 82, 35–45. 

26. Deng, Z. A., Hu, Y., Yu, J. G. and Na, Z. Y., Extended Kalman 
filter for real time indoor localization by fusing WiFi and smart-
phone inertial sensors. Micromachines, 2015, 6, 523–543. 

27. Urrea, C. and Munoz, R., Joints position estimation of a redundant 
SCARA robot by means of the unscented Kalman filter and iner-
tial sensors. Asian J. Control, 2016, 18, 481–493. 

28. Liu, L. J., Qi, B., Cheng, S. M. and Xi, Z. R., High precision esti-
mation of inertial rotation via the extended Kalman filter. Eur. 
Phys. J. D, 2015, 69, 1–6. 



GENERAL ARTICLES 
 

CURRENT SCIENCE, VOL. 117, NO. 10, 25 NOVEMBER 2019 1597

29. Qin, F., Chang, L., Jiang, S. and Zha, F., A sequential multiplica-
tive extended Kalman filter for attitude estimation using vector 
observations. Sensors, 2018, 18(5), 1414. 

30. Deng, F., Yang, H. and Wang, L., Adaptive unscented Kalman  
filter based estimation and filtering for dynamic positioning with 
model uncertainties. Int. J. Control, Automat. Syst., 2019, 17(3), 
667–678. 

31. Song, E., Xu, J. and Zhu, Y., Optimal distributed Kalman filtering 
fusion with singular covariance of filtering errors and measure-
ment noises. IEEE Trans. Autom. Control, 2014, 59(5), 1271–
1282. 

32. Zhang, P., Qi, W. and Deng, Z., Parallel covariance intersection 
fusion optimal Kalman filter. Appl. Mech. Mater., 2014, 475–476. 

33. Beravs, T., Begus, S., Podobnik, J. and Munih, M., Magnetometer 
calibration using Kalman filter covariance matrix for online esti-
mation of magnetic field orientation. IEEE Trans. Instrument. 
Meas., 2014, 63(8), 2013–2020. 

34. Lee, G. B., A fast moving object tracking method by the combina-
tion of covariance matrix and Kalman filter algorithm. J. Korea 
Inst. Inform. Commun. Eng., 2015, 19(6), 1477–1484. 

35. Wang, X., You, Z. and Zhao, K., Inertial/celestial-based fuzzy 
adaptive unscented Kalman filter with covariance intersection  
algorithm for satellite attitude determination. Aerosp. Sci. Tech-
nol., 2016, 48, 214–222. 

36. Zhang, L., Wang, Z., Tan, C., Si, L., Liu, X. and Feng, S., A fruit 
fly-optimized Kalman filter algorithm for pushing distance estima-
tion of a hydraulic powered roof support through tuning cova-
riance. Appl. Sci., 2016, 6(10), 299. 

37. Gandomi, A. H. and Alavi, A. H., Krill herd: a new bio-inspired 
optimization algorithm. Commun. Nonlinear Sci. Numer. Simul., 
2012, 17(12), 4831–4845. 

38. Wang, G., Gandomi, A. H., Alavi, A. H. and Deb, S., A multi-
stage krill herd algorithm for global numerical optimization. Int. J. 
Artif. Intel. Tools, 2015, 1–17. 

39. Wang, G., Deb, S., Gandomi, A. H. and Alavi, A. H., Opposition-
based krill herd algorithm with Cauchy mutation and position 
clamping. Neurocomputing, 2016, 177(C), 147–157. 

40. Wang, G., Gandomi, A. H. and Alavi, A. H., An effective krill 
herd algorithm with migration operator in biogeography-based  
optimization. Appl. Math. Model., 2014, 38(9), 2454–2462. 

41. Guo, L., Wang, G., Gandomi, A. H., Alavi, A. H. and Duan, H., A 
new improved krill herd algorithm for global numerical optimiza-
tion. Neurocomputing, 2014, 138(2), 392–402. 

42. Wang, G., Gandomi, A. H., Alavi, A. H. and Deb, S., A hybrid 
method based on krill herd and quantum-behaved particle swarm 
optimization. Neural Comput. Appl., 2016, 27(4), 989–1006. 

43. Wang, G., Gandomi, A. H., Yang, X. and Alavi, A. H., A new  
hybrid method based on krill herd and cuckoo search for global 
optimization tasks. Int. J. Bio-Inspired Comput., 2016, 8(5), 286–
298. 

44. Wang, G., Deb, S. and Cui, Z., Monarch butterfly optimization. 
Neural Comput. Appl., 2015, 1–20. 

45. Wang, G., Deb, S., Zhao, X. and Cui, Z., A new monarch butterfly 
optimization with an improved crossover operator. Oper. Res., 
2016, 1–25. 

46. Wang, G., Moth search algorithm: a bio-inspired metaheuristic  
algorithm for global optimization problems. Memet. Comput., 
2018, 10(2), 151–164. 

47. Wang, G. G., Deb, S. and Coelho, L. D. S., Earthworm optimiza-
tion algorithm: a bio-inspired metaheuristic algorithm for global 
optimization problems. Int. J. Bio-Inspired Comput., 2015, 12(1), 
1–22. 

48. Wang, G., Gandomi, A. H., Zhao, X. and Chu, H. C. E., Hybridiz-
ing harmony search algorithm with cuckoo search for global  
numerical optimization. Soft Comput., 2016, 20(1), 273–285. 

49. Wang, G., Chu, H. E. and Mirjalili, S., Three-dimensional path 
planning for UCAV using an improved bat algorithm. Aerosp. Sci. 
Technol., 2016, 49, 231–238. 

50. Wang, G., Guo, L., Duan, H. and Wang, H., A new improved  
firefly algorithm for global numerical optimization. J. Comput. 
Theoret. Nanosci., 2014, 11(2), 477–485. 

 
 
ACKNOWLEDGEMENTS. We thank all the reviewers for their con-
structive comments. The support of Fundamental Research Funds for 
the Central Universities (2018B04114), Changzhou Science and Tech-
nology Project (No. CE20185040), Project Found by Water Resources 
Department of Jiangsu Province (2018031), and Changzhou Key  
Laboratory of Aerial Work Equipment and Intellectual Technology 
(CLAI201801) in carrying out this work is gratefully acknowledged. 
 
 
Received 25 April 2019; revised accepted 6 August 2019 
 
 
doi: 10.18520/cs/v117/i10/1585-1597 

 
 
 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


