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Advancements in hyperspectral remote sensing tech-
nology have opened new avenues to explore innovative 
ways to map crops in terms of area and health. To 
study precise mapping of agriculture and horticulture 
crops along with biophysical and biochemical consti-
tuents at field scale, an airborne AVIRIS-NG  
hyperspectral imaging has been conducted in various 
agro-climatic regions representing diverse agricultur-
al types of India. Crop classification with available 
and developed algorithms has been applied over  
homogeneous and heterogeneous agriculture and hor-
ticulture cropped areas. The spectral angle mapper 
and maximum likelihood algorithms showed classifi-
cation accuracy of 77%–94% for AVIRI-NG and 
42%–55% for LISS IV. The customized deep neural 
network and maximum noise function (MNF)-based 
classification schemes showed an accuracy of 93% and 
86% for mapping of agriculture and horticulture 
crops respectively. The forward and inversion of  
canopy radiative transfer model protocol was deve-

loped for retrieval of crop parameters such as leaf 
area index (LAI) and chlorophyll content (Cab) using 
AVIRIS-NG narrow bands. The retrieved LAI and Cab 
showed 19%–27% and 23%–29% deviation from 
measured mean for homogeneous and heterogeneous 
agricultural areas respectively. Red edge position  
index-based empirical model and multivariate linear 
regression of multiple indices showed maximum cor-
relation of 0.62 and 0.93 respectively, to map leaf ni-
trogen content. Water condition index was developed 
using vegetation and water indices to distinguish crop 
water-based abiotic stress. Wheat yellow rust disease 
has been identified at field scale using absorption 
band depth analysis at 662–702 and 2155–2175 nm, 
and further applied to AVIRIS-NG data to detect bio-
tic stress at spatial scale. This study establishes that 
such missions have the potential to boost accurate 
mapping of economically valuable minor crops and 
generate health indicators to distinguish biotic and  
abiotic stresses at field scale. 
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Introduction 

THE growing burden of population over natural resources 
and economic cost of agricultural management limit the 
crop area and production in India. Thus, requirement of 
persistent and precise monitoring of agricultural growth 
and health is of paramount importance for judicious use 
of farm resources to manage potential crop yield. The 
technological advancements in the field of remote sensing 
proved their worth to characterize agricultural cropland 
from field to regional scale. Since the last three decades, 
traditional multispectral broadband sensors have been 
used for estimation of crop area and in-season monitor-
ing. However, these sensors have known limitations in 
terms of spectral bandwidth and spatial resolution1,2. 

Moreover, they are unable to map biophysical and bio-
chemical parameters of crops3. These factors lead to  
significant uncertainties in classification and health moni-
toring of crops. This needs specific narrow bands to study 
spectral properties with reference to molecular composi-
tion of the plant material. Hyperspectral remote sensing 
(or imaging spectroscopy) shows a great potential and 
improvements in classification of various crop types,  
retrieval of biophysical and biochemical contents, estima-
tion of nutrient content, and detecting abiotic and biotic 
stresses compared to traditional broadband spectral  
information. Hyperspectral remote sensing technology 
provides the opportunity to map the response of different 
crop types in terms of morphological and physiological 
characteristics in continuous spectral bands4,5. Accuracy 
of classification will further increase by reduction in  
dimensionality and redundancy of hyperspectral data. 
Usage of different techniques such as principal compo-
nent analysis (PCA), maximum noise fraction (MNF) 
transformation followed by pixel purity index can help in 
the reduction of data dimensionality and promise higher 
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classification accuracy. Crop physical and biochemical 
parameters such as leaf area index (LAI), chlorophyll 
content (Cab) and nitrogen content (N) will provide indi-
cators to assess crop physiological state under varying 
environments6. LAI, Cab and N have a direct role in photo-
synthetic processes of light harvesting and initiation of 
electron transport, and its responsiveness will change  
according to the severity of biotic and abiotic stresses7. 
These parameters can be retrieved using canopy radiative 
transfer models and different hyperspectral vegetation  
indices. The biophysical and biochemical constituents of 
crop canopies are directly expressed in the reflectance 
signatures that can be derived from imaging spectro-
meters measurements8. The spectral characteristics of  
vital expressions and controls of vegetation permit us for 
quantitative applications of imaging spectroscopy in  
order to address uncertainty of agro-ecosystem. More-
over, spectroscopic remote sensing can act as a bridge  
between field to regional scale and could also serve as a 
bridge to regions specific to global space-borne remote 
sensing missions, where coarse pixel size precludes direct 
comparison with fine scale measurements of important 
agro-ecosystem properties9. 
 In India under joint collaboration of Indian Space  
Research Organisation (ISRO), National Aeronautics 
Space Administration (NASA), Jet Propulsion Lab (JPL), 
an airborne campaign was organized to perform spectros-
copic imaging of selected agricultural sites of India. In 
this campaign, Airborne Visible/Infrared Imaging Spec-
trometer-Next Generation (AVIRIS-NG) sensor was 
flown aboard on ISRO B200 aircraft. AVIRIS-NG is an 
imaging spectrometer having around 425 contiguous nar-
row spectral bands in range of 380–2500 nm with high 
spectral resolution of about 5 nm and Instantaneous Field 
of View (IFOV) of 1 m rad (https://aviris-ng.jpl.nasa. 
gov/). In this study, data acquired over different agricul-
tural sites in India from AVIRIS-NG have been used to 
classify crop types, and for the retrieval of biophysical 
and biochemical parameters, and generation of abiotic 
and biotic stress maps. 

Study area 

The homogeneous and heterogeneous agricultural sites of 
20–550 sq. km were selected for AVIRIS-NG airborne 
flight. Here, Kota (Rajasthan), Maddur (Karnataka), 
Anand (Gujarat), Talala (Gujarat), Jhagdia (Gujarat), 
Roopnagar (Punjab) and Nagarjuna Sagar command area 
(Telangana) have been selected for agricultural studies. 
The study sites are selected on the basis of their unique 
agro-climatic settings, soil, crop (mono to mixed crops), 
rainfed and irrigated agricultural conditions. Kota site lies 
in central plateau and hill region, and represents homo-
geneous agricultural region dominated by wheat crop.  
Maddur site is located in Chamarajanagar district of  

Karnataka, and lies in the southern plateau and hill  
region. The site represents heterogeneous agricultural 
area. Anand, Talala and Jhagdia sites lie in the Gujarat 
plains and hill region, and have multi crops, mango orc-
hards under heterogeneous agricultural area. Nagarjuna 
Sagar command area is dominanted by black cotton 
clayey soil of the southern plateau and hill region.  
Rupnagar site is homogeneous wheat area and lies in  
the trans-Gangetic plain region. Figure 1 gives the  
spatial distribution of sites over Indian land mass and  
Table 1 describes the area covered in AVIRIS-NG air-
borne flight. 

Datasets used 

In situ data 

Crop and soil reflectance data were obtained with the 
ASD spectroradiometer across spectral regions of 350–
2500 nm at 1 nm interval over aforementioned study sites 
in coherence with AVIRIS-NG flight. The instrument has 
been attached with standard fore-optic with 25° field of 
view (FOV) through a permanent fibre optic cable. All 
the spectral measurements were made between 1030 and 
1420 h local standard time. LAI and chlorophyll index 
measurements for various crops were carried (LICOR-
2000 Canopy analyser and Konica Minolta chlorophyll 
meter SPAD-502 Plus respectively) for all sites. At 
Anand, crop samples were collected from each site and 
leaf nitrogen content was estimated from them using an 
auto-analyser10. 
 
 
 

 
 

Figure 1. Location of the study area. 
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Table 1. Details of study sites 

 Date of flight Upper left (N) Upper left (E) Lower right (N) Lower right (E)  
Site (2015–16) (degree) (degree) (degree) (degree) 
 

Kota 5 February 25.18 75.67 25.08 75.68 
Maddur 10 January 11.98 76.54 11.58 76.67 
AAU, Anand 7 February 22.61 72.88 22.46 73.06 
Talala 9 February 21.06 70.63 21.05 70.65 
Jhagdia 8 February 21.77 72.95 21.45 73.29 
Nagarjuna Sagar 20 December 16.90 79.31 16.93 79.35 
Rupnagar 20 February 31.08 76.47 31.03 30.99 

 
 

 
 

Figure 2. Flow chart of the overall methodology. 
 

 
Airborne data 

AVIRIS-NG is an imaging spectrometer having around 
425 contiguous narrow spectral bands in the spectral range 
380–2500 nm at 5 nm interval with high signal-to-noise 
ratio (SNR) (>2000 @ 600 nm and >1000 @ 2200 nm) 
and accuracy of 95% having FOV of 34° and IFOV of 
1 m rad (https://aviris-ng.jpl.nasa.gov/). Ground sampling 
distance (GSD) vis-à-vis pixel resolution varies from 4 to 
8 m for flight altitude of 4–8 km for a swath of 4–6 km.  

Satellite data 

Resourcesat-2 (RS-2) Linear Self Scanning Sensor (LISS) 
IV provides three broad spectral bands, viz. green (520–
590 nm), red (620–680 nm) and NIR (770–860 nm). LISS 
IV data have 5.8 m spatial and 10 bit radiometric resolu-
tion. The LISS IV data over Talala region of February 
2016 has been used in this study. AVIRIS-NG data have 
also been used to generate RS-2, LISS IV bands at parent 
spatial resolution and quantization of AVIRIS-NG using 
spectral response function of LISS IV over Maddur  
region. 

Methodology 

Figure 2 shows a flow chart of the overall methodology. 

Data pre-processing 

The level-2 AVIRIS-NG surface reflectance data have 
been used in this study. From the spectral data, Fraunho-
fer lines were removed for further analysis. The laboratory-
computed spectral response functions of three spectral 
bands of RS-2 LISS IV sensor were applied over AVIRIS-
NG data to generate LISS IV equivalent spectral bands. 

Dimensionality reduction 

To reduce data dimensionality in the present study, PCA, 
MNF transformation and deep neural network (DNN) 
based spectral band reduction methods were applied over 
AVIRIS-NG data at different sites. 

Classification techniques 

The classification techniques such as spectral angle  
mapper (SAM), maximum likelihood classifier (MLC), 
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support vector machine (SVM), MNF, hierarchical deci-
sion, classification-based on absorption band depth 
(ABD) and DNN have been applied using in situ and 
AVIRIS-NG data to classify different agricultural and 
horticultural crops. Kappa coefficient and overall accuracy 
coefficients were used for classification accuracy assess-
ments11. 
 
Spectral angle mapper: SAM is a spectral classification 
that uses an n-dimensional angle to match pixels to refer-
ence spectra. The algorithm determines similarity be-
tween two spectra by calculating the angle between them, 
treating the spectra as vectors in a space with dimensio-
nality equal to the number of bands. SAM compares the 
angle between the endmember spectrum vector and each 
pixel vector in n-dimensional space. Smaller angles 
represent closer matches to the reference spectrum. The 
class with which a pixel records the lowest angle is the 
one in which it is classified12. 
 
Maximum likelihood classification: MLC helps in the 
case of overlapping classes and calculates the likelihood 
of a pixel belonging to certain class based on its posterior 
probability. If Nc is the number of classes and likelihood 
of a pixel p belonging to certain class Wi (i = 1, 
2, ... , Nc) can be defined in terms of posterior probability 
P(Wi/p) and the class with which the pixel will  
have maximum likelihood, then it is assigned to that 
class13. 
 
Support vector machine: SVM is a binary classifier 
based on statistical learning theory for generating a linear 
separating hyper-plane that maximizes the margin  
between two targeted classes, i.e. maximizes the dis-
tances between the closest vectors (also known as support 
vectors) of the two classes. However, when noisy data 
lead to intermixing of classes, introduction of slack  
parameters or regularization parameters or penalty para-
meters which create a soft margin to allow some amount 
of training samples of one class to lie on another side of 
the margin, makes the concept more robust and efficient 
in handling noisy data14. Multiclass SVM classifiers are 
modified versions of binary SVM classifiers where  
pairwise strategy is mostly used in which binary classifi-
ers for each possible pair of classes are formed15. The 
class labels that appear the most are assigned to that  
pixel16. 
 
Maximum noise fraction: MNF transformation utilizes 
the most common measures of image quality17, i.e. SNR 
and chooses newer components such that SNR is  
maximized in contrast to PCA18. As the set of eigenvec-
tors set obtained after maximizing noise fraction is the 
same as maximizing SNR (just in reverse order), MNF 
maximizes the variance of noise with respect to variance 
of whole data. When original data are transformed  

alongwith these new components, the MNF will show 
better image quality. 
 
Hierarchical decision rule: Vegetation indices (VIs) 
have been combined with Hierarchical decision rule-
based classification. Vegetation indices were computed 
and taken as input for hierarchical decision rule-based 
classification19. Different vegetation indices used were 
normalized difference vegetation index (NDVI), water 
band index (WBI) and normalized difference infrared  
index (NDII). 
 
Absorption band depth: The continuum-removed reflec-
tance was obtained by dividing the original reflectance 
values (R) by the corresponding values of the continuum 
line (RL) for all the channels in the wavelength region 
between the endpoints of the absorption feature: CR = 
(R/RL)20. The depth (D) of the absorption feature was 
calculated as the difference between the continuum line 
and minimum value in the continuum-removed spectral 
feature BD = (1 – CR). 
 
Deep neural network: After dimensionality reduction 
PCA technique was applied on six parts of the dataset and 
principal components explaining highest variability were 
selected for Anand site. Eigenvectors of the first two 
principal components were used to ascertain significant 
bands. Three sets of top 10, 25 and 50 significant bands 
with high frequency of being selected in six subsets were 
considered. Training sites were marked in the image  
using ground-truth sites of crops, vegetation classes and 
fallow lands. DNN with 391 bands, three hidden layers of 
300, 150 and 50 nodes, rectified linear unit (Relu) activa-
tion function and output layer of training classes was 
used for band selection21. Bands which often activated the 
nodes of the output layer were selected as the most signif-
icant using a back traversal of neural network. The most 
optimal band set from both the methods was selected 
based on overall accuracy and average class accuracy. 
Classification was carried out using DNN classifier with 
selected optimum bands and training dataset22. Three 
hidden layers and Relu activation function were used in 
the neural network. Spectral profiles were generated  
using GT sites for different crops, vegetation classes and 
fallow lands. Spectral profile of predicted pixel was 
matched with GT-based reference profiles of selected 
land features with Euclidian distance of 0.075. Aug-
mented dataset was generated with pixels whose spectral 
profiles matched with the reference profiles. Seperability 
analysis between training classes was carried out for  
optimum set of bands selected using PCA and DNN-
based methods. Jeffries–Matusita (JM) distance and aver-
age JM distance between classes were computed and 
compared for both methods. On the basis of accuracy 
measures and seperability analysis, the final set of opti-
mum bands was selected for classification. 
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Retrieval of crop parameters 

One-dimensional canopy radiative transfer simulation 
model PROSAIL, the combined form of PROSPECT and 
SAIL (scattering by arbitrary inclined leaves) has been 
used in this study for retrieval of canopy parameters. 
PROSPECT simulates reflectances at leaf level and  
SAIL addresses the directionality23. The model simulates 
reflectance using leaf biophysical–chemical constituents 
such as leaf structure parameter (N), chlorophyll (a + b) 
content (Cab), leaf equivalent water thickness (Cw), leaf 
dry matter content (Cm), LAI, leaf inclination angle 
(LIA), hot spot parameter (SL), horizontal visibility (vis), 
sun zenith angle (θs), view zenith angle (θv), relative  
azimuth angle (φsv) and soil albedo (ρs). The CRT model 
was customized for AVIRIS-NG spectral bands. The 
model will simulate AVIRIS-NG bands in forward simu-
lation according to the given inputs. Input parameters of 
models were divided into different intervals within their 
theoretical lower and upper limits to cover whole dynam-
ics of crops according to in situ observations and the  
reported literature. Considering their limits and intervals, 
combinations of different inputs resulted in various  
scenarios for the respective crop types. A cost function 
(S) was used for inversion that represents the sum of 
square differences between AVIRIS pixel band reflec-
tances and model-simulated band reflectances. Minimum 
of the cost function was obtained using least square  
approach which gives unique value of LAI and Cab for a 
given set of observed reflectances using generated Look 
Up Table (LUT) through forward simulations. This  
approach is similar to the variational method in which 
difference of error is minimized, but differs in observa-
tion error covariance matrices. This may be the scope of  
future research under that variational approach24. In the  
 
 

 
 

Figure 3. Conceptual plot of the Water Indices and Normalized Dif-
ference Vegetation Index triangle to determine soil and crop wetness 
status. 

variational method, cost function, which is a function of 
total variance is minimized. 
 All nitrogen-sensitive Vegetation Indices (VIs) in blue, 
green, red, NIR and SWIR-1 spectral band regions were 
computed from ground spectra and AVIRIS-NG to esti-
mate the existing bias between them. Individual VIs from 
ground spectra and the plant nitrogen content were com-
puted to develop multivariate linear regression models 
with significant correlated VIs. The model was then  
applied to AVIRIS-NG spatial data to generate distri-
buted plant nitrogen map. The developed models were 
validated with independent in situ data. 

Abiotic stress 

To integrate the moisture status and surface reflectance, 
water condition index (WCI) based on WIx–VI triangle 
space has been defined. WCI is related to the surface soil 
moisture status/vegetation water content, where higher 
values of WCI indicate wet conditions and vice versa 
(Figure 3). WCI is defined as 
 

 min

max min

WI WI
WCI ,

WI WI
xi −=

−
 (1) 

 
where 
 
 WImin = a + bNDVIi and WImax = a0 + b0 * NDVIi. 
 
where NDVIi is the normalized difference vegetation  
index of the ith pixel, a and a0 are the intercept while b 
and b0 are the slope of the dry and wet edge respectively. 
Other hyperspectral indices such as NDVI25, WBI26, 
NDII27, normalized difference water index (NDWI)28, 
land surface water index (LSWI)29 have been computed 
according to the literature. 

Biotic stress 

Two different approaches, viz. disease index and absorp-
tion depth-based classification were used at Rupnagar site 
to discriminate healthy and rust-infested wheat crop. The 
indices such as leaf rust disease severity index (LRDSI) 1 
and 2 has been used for classification30. 

Results and discussion 

Optimum band selection 

To reduce data dimensionality for AVIRIS-NG (400–
2500 nm) and LISS IV equivalent multispectral bands 
generated from AVIRIS-NG, PCA was applied at Maddur 
site representing heterogeneous agricultural area. Typi-
cally, the first few PCs explained maximum proportion of 
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Figure 4. Crop-type discrimination over (a) homogeneous and (b) heterogeneous agricultural areas using supervised 
SAM classification. 

 
 
variability in terms of eigenvalues in the data. Adjacent 
hyperspectral wavebands showed noise, saturation and 
redundancy of the data. Therefore, based on the analysis 
and variability of the data, it is conferred that higher the 
eigenvector, higher the importance of the band. For 
AVIRIS-NG and LISS IV five and two bands showing 
high eigenvalues respectively, have been used to classify 
crop types. 
 Selection of optimum bands was carried out using PCA 
and DNN-based band selection methods at Anand site. 
Three sets of top 10, 25 and 50 significant bands resulted 
in the selection of 20, 40 and 80 optimum bands respec-
tively, using both the methods. Bands selected by PCA 

method lie in BLUE, GREEN, RED and NIR regions, 
whereas bands selected by DNN method also have SWIR 
region. 
 Discrimination of mango and sapota was done with 18 
high SNR bands in MNF transformed space for AVIRIS-
NG image over Talala region. 
 At Jhagdia site, continuum removal (CR) and further 
normalization was done to identify spectral bandwidth 
661–702, 947–998 nm to discriminate fresh and ratoon 
sugarcane. Moreover, these bandwidths showed maximum 
different in absorption band depth in whole vegetative 
spectrum and represent crop pigment and leaf structure 
properties. 
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Figure 5. Crop-type discrimination over heterogeneous agricultural site of Maddur, Karnataka using (a) SAM and (b) MLC with 
AVIRIS-NG and LISS-IV convoluted data. 

 
Crop classification 

The SAM algorithm was applied over AVIRIS-NG data 
to classify crop type in homogeneous (Kota site) and  
heterogeneous (Jhagdia site) agricultural areas. For this 
25 training datasets were prepared using in situ spectral  
observations convoluted according to the spectral band-
width of AVIRIS-NG data in the form of ROIs (regions 
of interest) for various crop types. The generated classi-
fied images showed classification accuracy of 86.4% and 
80.8% with kappa coefficient of 0.84 and 0.77 for Kota 
and Jhagadia agricultural sites respectively, with 15 inde-
pendent in situ data. The crop-type classification and 
spectral behaviour of AVIRIS-NG and in situ data  
(Figure 4 a and b) reveal that curvature (slope) of both 
the spectral remains same for various crop types but dif-
ference in magnitude exists. This may due to (i) exposure 
of soil within plant canopy, (ii) two or more crops within 
a pixel and (iii) atmospheric perturbations. 
 After PCA, five from 420 bands of AVIRIS-NG and 
two from three bands of LISS IV were selected to classify 

crop types using SAM and MLC algorithms. Totally 25 
ROIs were generated from in situ data as training dataset. 
AVIRIS-NG-based classification showed better accuracy 
compared to LISS IV equivalent multispectral data  
(Figure 5). This is due to the presence of specific narrow 
bands in AVIRIS-NG, which possess information of crop 
chlorophyll, protein, lignin, cellulose and nitrogen con-
tents as well as biophysical information. Whereas LISS 
IV only provides information in GREEN, RED and NIR 
broadbands and thus is unable to address crop-specific 
biochemical and biophysical properties. The results show 
that convolution of LISS IV equivalent broadband data 
results in loss of crucial information essential for accurate 
crop discrimination, while narrow contiguous bands of 
AVIRIS-NG data contain this critical information. The 
confusion matrix generated from SAM-based AVIRIS-
NG and LISS IV classified image with 15 independent in 
situ data showed accuracy of 77.7% and 42.8% and kappa 
coefficient of 0.75 and 0.34 respectively. While MLC-
based classification showed classification accuracy 
94.3% and 55.6% and kappa coefficient 0.93 and 0.46 
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Table 2. Cross-classification between mango and sapota orchards 

 AVIRIS-NG all bands AVIRIS-NG MNF space LISS IV 
 

User accuracy (%) Mango Sapota Mango Sapota Mango Sapota 
 

SAM 100 90.7 – – 47.62 32.89 
MLC – – 100 100 47.37 86.44 
SVM – – 96.46 100 50.5 73.21 

 
 

 
 

Figure 6. FCC and classified image of parts of Anand site. 
 

 
respectively, for AVIRIS-NG and LISS IV equivalent 
multispectral bands. The higher accuracy is observed in 
MLC classifier suggests that the hyperspectral data  
derived from the optimal band configuration of the air-
borne sensor have a sufficiently Gaussian distribution. This 
gives a full and representative description of the respec-
tive classes (spectrally separable crop type), and fulfils 
the requirements for such a parametric algorithm31. The 
accuracy of classification can be further improved with 
multi-temporal hyperspectral data32. 
 The PCA and DNN-based methods showed overall  
accuracy for 20, 40 and 80 optimum bands were 96% and 
93–98% respectively, but average class accuracy ranged 
from 92% to 94% at Anand site. Total 3,775 and 164,226 
AVIRIS-NG pixels from 12 different classes were used as 
training and validation datasets respectively. Overall  
accuracy for 20, 40 and 80 optimum bands selected with 

DNN ranged between 93% and 98%, and average class 
accuracy ranged from 88% to 97%. Maximum average 
class accuracy as obtained with 40 bands was 92% with 
PCA and 97% with DNN-based selection method. Aver-
age JM distance (1.41) between classes was higher for 
optimum bands selected with DNN than those selected 
with PCA. Final classification was carried out with 40 
bands selected using DNN method after consideration of 
accuracy and separability tests. Figure 6 shows the classi-
fied image. Through this classification algorithm identifi-
cation of wheat at vegetative and soft dough stages, 
tobacco at vegetative and peak vegetative stages, castor, 
linseed and shrubs, dry and wet fallow lands have been 
done. The features not correctly identified were marked 
as unclassified pixels. Confusion matrix generated from 
training classes gave an overall accuracy of 95% and  
average class accuracy of 93% with kappa coefficient of 
0.94. Validation of classified pixels was done by match-
ing their spectral profiles with the respective references. 
Figure 7 shows the classified pixels and their reference 
profiles. 
 The different classification algorithms were used to 
classify homogeneous horticultural crops at Talala region 
using 20 in situ data as training dataset and 15 indepen-
dent dataset for accuracy assessment. Both MLC and 
SVM provided classification accuracy of nearly 86% 
(86.64% for MLC and 85.02% for SVM), and mango ver-
sus sapota discrimination (ground truth testing data) of 
about 100% (except for sapota using SVM). The classifi-
cation accuracy obtained by applying SAM on AVIRIS-
NG all-bands data was also higher than LISS-IV multis-
pectral image, as expected. Applying SAM classifier on 
AVIRIS-NG data using all bands provided a classifica-
tion accuracy of ~72%. Table 2 shows inter-species 
cross-classification accuracy between mango or sapota. It 
is clearly observed that the cross-classification is much 
higher for AVIRIS-NG image in comparison to LISS IV 
data, thus highlighting the efficiency of using hyperspec-
tral data over multispectral data. Figure 8 shows the clas-
sified map (vegetation classes only) generated using 
MLC over high SNR 18 bands of AVIRIS-NG data in 
MNF transformed space. It shows high classification  
accuracy and user accuracy with lowest intermixing  
between mango and sapota classes. 
 At Jhagdia site, hierarchical decision tree and continuum-
removed absorption depths were used to discriminate 
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Figure 7. Spectral profiles of classified data and in situ-based profiles. 
 

 

 
 

Figure 8. Classified map of Talala site state generated from AVIRIS-
NG. 
 
 
fresh and ratoon sugarcane. A total of 15 and 10 in situ  
datasets were used for training and validation respectively. 
NDVI, WBI and NDII were used in hierarchical decision 
tree. The threshold of these indices were generated from 
in situ data. These indices are adequate to describe the 
biochemical or biophysical interactions between light and 
matter, and have the potential for crop-type discrimina-
tion33. The identified spectral bands based on absorption 
depths computed from normalization of continuum analy-
sis (660–702 nm and 947–998 nm) were used to discri-
minate fresh and ratoon sugarcane crop. The bands 
showing maximum difference in absorption depths were 
selected for discrimination analysis. The spectral fitting 
score with independent data sets showed maximum value 
of 0.87 and 0.75 for ratoon and fresh sugarcane respec-
tively, for absorption depths between 947 and 998 nm 
spectral bands (Figure 9). 

Retrieval of crop parameters 

Figure 10 a and b shows one-dimensional sensitivity  
of canopy radiative transfer model for LAI and Cab  

respectively. Here, typical mean values of parameters 
over observations at Kota site have been considered for 
sensitivity analysis. LAI and Cab varied from a fixed val-
ue of 2.5 and 30 μg cm–1 with an increment and decre-
ment of 0.5 and 5 respectively. The visible and near-
infrared band reflectances showed variation from –28% 
to 40% and from –8% to 16% respectively, for different 
LAI intervals. Cab showed sensitivity only to visible band 
and the variation from its fixed value yielded –90% to 
56% variation in reflectances. The analysis showed that 
all visible and near-infrared bands were sensitive to LAI 
and Cab, and their fluctuation could be captured through 
simulated reflectance values. 
 The decorrelation technique showed that ten spectral 
bands had maximum decorrelation in the range 400–
1000 nm. Among them, six (451, 551, 677, 797, 857, 
882 nm) and four (451, 551, 656, 677 nm) narrow bands 
of AVIRIS-NG showing maximum sensitivity to LAI and 
chlorophyll content were selected for retrieval of these 
parameters. The model was run in forwarded mode by  
integration of the respective AVIRIS-NG bands to  
generate LUT for LAI and Cab for the selected bands  
separately. The retrieval of LAI and Cab was done by  
inversion of AVIRIS-NG reflectances using the generated 
LUT. LAI and Cab were retrieved over the heterogeneous 
agriculture area of Jhagdia covering crops such as wheat, 
sugarcane, banana, onion and pigeon pea. At Jhagdia site, 
50% of agricultural area is dominated by wheat and  
sugarcane crops. LAI and Cab varied from 1 to 5 and 5 to 
40 μg cm–2 respectively (Figure 11 b and c). The valida-
tion from in situ data showed deviation of 27.5% and 
29.54% from the mean for LAI and Cab respectively  
(Figure 12), for various crop types. The LAI and Cab were 
also retrieved over the homogeneous agricultural area of 
Kota, covering crops such as wheat, mustard, beans, gar-
lic, fenugreek, coriander, peas and onion. At Kota, wheat 
crop area is about 70% while 30% is covered by other 
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Figure 9. a, Spectral profile of sugarcane and ratoon crops. b, Spatial distribution of types of sugarcane using different 
classification techniques. 

 
 

 
 

Figure 10. Sensitivity analysis of canopy radiative transfer model for (a) Leaf Area Index (LAI) and (b) chlorophyll  
content. 

 
 
crops. LAI and Cab varied from 1 to 7 and 10 to 
50 μg cm–2 respectively (Figure 11 e and f). The validation 
from in situ data showed deviation of 19.75% and 

23.05% from mean data for LAI and Cab respectively 
(Figure 12). The root mean square error and percentage of 
deviation from mean was high in heterogeneous agricultural 



SPECIAL SECTION: HYPERSPECTRAL IMAGING 
 

CURRENT SCIENCE, VOL. 116, NO. 7, 10 APRIL 2019 1118

 
 

Figure 11. Spatial distribution of LAI and chlorophyll content at (a–c) heterogeneous and (d–f ) homogeneous agricultural regions. 
 
 
 

 
 

Figure 12. Validation of retrieved LAI with ground-measured LAI (a) and chlorophyll content (b) over homogeneous and heterogeneous 
agricultural areas. 

 
 
area due to low canopy density leading to mixing of soil 
background reflectance with crop and more than one crop 
within a pixel. 
 To retrieve crop nitrogen correlation between measured 
N at Anand site and narrow band indices from AVIRIS-
NG was computed. The correlation with different indices 
varied from –0.3 to 0.44. Highest correlation of 0.44 was 
found with photochemical reflectance index (PRI)34  
followed by normalized difference nitrogen index (NDNI; 
0.4)35. The NDWI and carotenoid reflectance index 

(CRIndex) 1 and 2 showed negative correlation36. These 
indices were further used to develop the multivariate 
model that resulted in R2 of 0.81. The validation with in-
dependent dataset showed R2 of 0.71. The model structure 
is given in eq. (2). 
 
 Plant N content (%) = a1*X1 + a2*X2+ ⋅⋅⋅ + a12*X12, (2) 
 
where X1 is NDVI, X2 is SRI (simple ratio index)37; X3  
is EVI (enhanced vegetation index)38, X4 is ARVI 
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Figure 13. Spatial distribution of % N content over agricultural area of Anand site. 
 

 
 

Figure 14. a, Scatter plot of NDVI versus WBI, NDWI, NDII and LSWI. b, WBI, NDWI, NDII and LSWI plotted for different 
ground-truth features. 
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Figure 15. Discrimination of stress and unstressed crop by WCILSWI. 
 

 
(atmospherically resistant vegetation index)39, X5 is mod-
ified red edge SRI40, X6 is Vogelmann red edge index – 1 
(ref. 41), X7 is REPI (red edge position index)42, X8 is 
PRI, X9 is NDNI, X10 is CRIndex1, X11 is CRIndex2 and 
X12 is NDWI. a1, a2 ,…, a12 are the coefficients of X1, 
X2, … X12. The above model was applied to the 12 indices 
to generate spatial plant N content map from AVIRIS  
data (Figure 13). The plant N content in different crops 
varied from 0.5% to 4% of the plant dry weight. 

Abiotic stress 

In Nagarjuna Sagar command area, transplanted rice field 
(waterlogged) had the lowest NDVI; however, it had the 
highest value in all the water indices. In order to capture 
the continuous change in water indices for a given NDVI, 
portion of the study area was chosen which exhibited 
wide range of moisture conditions and crop cover. The 
corresponding values of NDVI were plotted against WBI, 
NDWI, NDII and LSWI (Figure 14 a). The shape of the 
scatter plot between NDVI and water indices was similar 
to the triangular space of LST and NDVI43. In NDII–
NDVI triangles, slope of the wet and dry edge was much 
steeper wet edge than LSWI–NDWI. This may be due to 
limitations of the LSWI in mixing the response between 
the wet surface and healthy crop. In this study NDVI–
NDII triangle has been used during all stages of the crop 
to discriminate wet and healthy crops. 
 The ground observations showed that WBI and NDWI 
were more sensitive to water content in the soil compared 
to crop water content at different NDVI values. The nor-
malization of these indices was carried out by deriving 
the WCI. One of the important assumptions in the estima-
tion of WCI is that the soil moisture and vegetation water 

content are the main contributing factors for variation in 
all WIx. The dry and wet edges were computed using the 
scatter plots of NDVI and WIx. Using the wet and dry 
edge with current NDVI values WCI is computed for the 
study area. The main advantage of deriving the WCIs is 
to bring the four indices to a common scale (Figure 14 b). 
Among the WCIs, WCI-LSWI was able to explain the 
variations from dry soil/crop conditions to the wet satu-
rated soil and healthy crop conditions. The use of WCIs, 
helped in overcoming the saturation of WBI and NDWI 
at higher NDVI. This technique also helped in discrimi-
nating the healthy crops from the stressed crops at peak 
vegetative stage. The LSWI showed whole area as 
healthy crop area as shown in Figure 15 even though it 
comprises healthy crop and irrigated fallow fields. The 
low WCILSWI values (Figure 15 c), indicate that a part of 
the crop is under stressed condition while a small portion 
is healthy. The surrounding wet fallow field showed high 
WCILSWI value and was able to discern all four cases of 
moisture condition, like dry fallow, wet fallow, healthy 
crop and stressed crop. 

Biotic stress 

The threshold of disease indices LRDSI-1 and LRDSI-2 
in the range 7.5–7.9 and 8–8.4 respectively, derived from 
ground-observed spectra were used to discriminate  
yellow rust-infested wheat crop at Rupnagar site. Further, 
after continuum removal absorption band depth from 
ground-based and AVIRIS-NG spectra revealed that two 
characteristic spectral regions one each in visible (662–
702 nm) and SWIR (2155–2175 nm) were able to discrimi-
nate infested crops (Figure 16 a). For visible domain 0.25–
0.35; 0.20–0.23 and SWIR domain 0.07–0.14; 0.03–0.06, 
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Figure 16. a, Selection of spectral band for wheat disease identification. b, Classification of healthy and diseased wheat 
crops using different classification techniques. 

 
 
absorption depths were selected for healthy and disease-
infested crops respectively. Based on the absorption 
depth, spatial distribution of healthy and disease-infested 
wheat crops was generated (Figure 16 b). The ground and 
classified image spectra were used to generate matching 
score by applying spectral feature fitting. This showed 
0.91 and 0.93 scores for healthy and yellow rust-infested 
wheat crop respectively, for band depth-based classifica-
tion. Some studies have also reported that wheat aphids-
infested crops have low reflectance in near-infrared and 
high in visible compared to healthy crops and specific 
band centres at 694 nm and 800 nm respectively44. 

Conclusion 

This study examined the performance of AVIRIS-NG 
hyperspectral narrow band data in many agricultural  
applications like crop-type discrimination, retrieval of 
crop biophysical and biochemical parameters, and crop 
stress assessment. The performance of hyperspectral data 
varied across homogeneous and heterogeneous agricul-
tural systems. The low accuracy in heterogeneous  
agricultural area in discrimination and retrieval of crop 

parameters was due to low crop fraction or overlapping of 
two crops within a pixel leading to mixing of spectral 
signature of soil background and other crop with the 
dominated targeted crop at finer spatial scale. This further 
alters the unique spectral signal of a particular crop and 
decreases classification accuracy. In future, modelling of 
sub-pixel heterogeneity using linear and non-linear ap-
proach will improve the accuracy of classification45. The 
study clearly showed that hyperspectral data provide bet-
ter classification accuracy compared to multispectral 
LISS IV data in different agricultural settings. It is ob-
served that high-dimensional nature of hyperspectral data 
introduces many limitations in supervised classifiers, 
such as the limited availability of training samples, since 
in order to obtain statistically reliable results, the amount 
of training data needed to support the results often grows 
exponentially with dimensionality. Thus, data reduction 
techniques such as PCA, MNF and DNN provide better 
accuracy for crop classification. The forward and inver-
sion of canopy radiative transfer model using AVIRIS-
NG increase the retrieval accuracy of LAI and Cab over 
different crop types. The plant N content also showed good 
retrieved accuracy with multivariate linear modelling of 
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specific narrow band hyperspectral indices. The unique 
characteristics of narrow band indices and absorption fea-
tures in specific bands have been used to discriminate 
biotic and abiotic stresses. The measurements from 
AVIRIS-NG at finer scale provided unique absorption 
features of crop biochemistry. Airborne measurements 
are largely preserved the variation in spectral shape due 
to biochemical constituents of each crop type and there-
fore, could be used to discriminate crop types and retri-
eval of biophysical and biochemical contents. Despite the 
promising results obtained in this study, substantial chal-
lenges still remain for extensive applications of imaging 
spectroscopy to quantify all important crop pigments  
responsible for crop growth and development. The quan-
tification of these pigments or biochemical constituents 
will provide a pathway for discrimination of crop type 
and different stresses. 
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