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Numerous studies have been carried out recently on 
the sequestration of carbon dioxide (CO2), a green-
house gas, produced due to human activities. Conse-
quently, storage of CO2 in storage sites, such as 
unmineable coal seams, has been identified as one of 
the promising options with the advantage of recover-
ing coal-bed methane (CH4). However, CO2 injected 
into coal seams contains additional gases that may  
reduce storage capacity, cause changes in sorption  
behaviour and physicochemical properties of coal. 
This research was aimed at investigating the sorption 
behaviour of three South African coals (sorbents)  
upon pure CO2 and flue gas (sorbates) sorption. 
Measurements were conducted on 10 g samples with a 
grain size <2 mm. A synthetic industrial flue gas con-
taining 12% CO2, 5.5% O2, 82% N2, 0.38% SO2 and 
0.12% NO2 was used in the study. Sorption isotherms 
were measured at a temperature ranging from 30 to 
60°C and pressures up to 9 MPa using a high-pressure 
CO2 volumetric adsorption system (HPCVAS). Sorp-
tion of CO2 by coal was highly reduced in the presence 
of additional gases due to competition for sorption 
sites. The reduction in CO2 (in flue gas) sorption  
capacity of coal was up to 63% compared to sorption 
of pure CO2. 
 
Keywords: Carbon dioxide, coal, flue gas, preferential 
sorption, sorption capacity. 
 
SINCE the industrial evolution, large amounts of green-
house gases (GHGs), including some radioactive gases 
have been emitted into the atmosphere1. This has led to 
climate change which is one of the main risks threatening 
humanity. The continuous burning of fossil fuel increases 
atmospheric CO2 concentration each year and this can 
warm the planet. A natural question that arises with re-
spect to sequestration of anthropogenic CO2 is: how long 
should CO2 emission be kept under control to ensure that 

global temperature rise is within 2°C? The interconnec-
tion between climate change and CO2 emissions has been 
a ‘hot topic’ amongst scientists, politicians, and the gen-
eral public. This discussion has been coined the term 
‘greenhouse effect’2. 
 Merely maintaining the atmospheric CO2 concentra-
tions between 450 ppm and 650 ppm by 2100 would  
require an extreme reduction in anthropogenic CO2 emis-
sions over the next 20–30 years. Eventually, reducing 
GHG emissions will be a supreme mitigating action, ne-
cessitating more efficient and cleaner energy sources than 
fossil fuels, and other changes in current humanity activi-
ties3. At the United Nations Climate Change Conference 
held in Paris in 2015, 195 countries (including South  
Africa) settled on a plan to decrease CO2 emissions and 
other GHGs. This was done to limit the global tempera-
ture rise below 2°C (this is relative to pre-industrialization 
evolution climate; thus, future global warming should be 
limited to below 1.4°C because the global temperature 
has already increased by 0.6°C at the end of the twentieth 
century)4. 
 Investigations have shown that South Africa, a devel-
oping country, is amongst the top 15 emitters of CO2 in 
the world5. Due to the increasing worldwide focus on 
climate change, there has been an increasing awareness 
that South Africa needs to assume low-carbon intensive 
routes to avoid foreseeable social and financial penalties6. 
Since the Kyoto Protocol in Copenhagen in 2009, South 
Africa has committed to reducing its GHG emissions by 
at least 34% till 2020 and by 42% till 2025, subject to  
receiving sufficient financial support and necessary tech-
nology from international fraternity7. 
 Carbon capture and storage (CCS) technology is one of 
the integral parts of the intergovernmental panel on  
climate change (IPCC)8 strategies to reduce the amount 
of CO2 in the atmosphere9. With growing awareness 
about the importance of CCS in resolving global warm-
ing, efforts have been made in political, engineering and 
academic sectors to develop knowledge capacity and 
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technical know-how in CCS10. In 2010, the South African 
Centre for Carbon Capture and Storage (SACCCS) 
launched an atlas on geological storage of CO2 in South 
Africa. This was followed with the identification of sto-
rage sites and their capacities11,12. From the investigation, 
an overall potential CO2 storage capacity of 150 giga-
tonnes (Gt) was reported and CO2 storage capacity of 
about 1 271.9 million tonnes (Mt) was found in coal 
fields. 
 Injection of CO2 into unmineable coal seams is one of 
the most attractive systems to sequester CO2; however, 
precise knowledge of injection and sorption-induced coal 
property changes are essential for safe and successful im-
plementation of this storage technique13. Injecting CO2 
into unmineable coal seams consists of two beneficial 
parts, (1) enhanced coalbed methane recovery and (2) 
CO2 sequestration. In conventional geological reservoirs, 
CO2 is thought to be trapped by four mechanisms includ-
ing capillary or residual, structural, mineral and dissolu-
tion trappings. However, adsorption trapping of CO2 is 
the most dominant storage mechanism in coal matrix14. 
 For geological storage of CO2 in unmineable coal 
seams, little attention has been focused on direct injection 
of flue gases from power plants or other flue gas emitting 
sources. There is also limited understanding of flue gas 
sorption behaviour into unmineable coal seams, particu-
larly, for South African coals15. Therefore, this article 
presents the effect of impurities in CO2 stream on CO2 
sorption capacity of selected South African coals. Syn-
thetic flue gas (containing 12% CO2, 5.5% O2, 82% N2, 
0.38% SO2, and 0.12% NO2) has been evaluated/used to 
mimic the industrial flue gas from coal-fired power plant 
(instead of pure CO2) for experimental purposes. The 
sorption was measured under reservoir in situ and super-
critical CO2 conditions. This provided an experimental 
basis for conclusive predictive assessments of flue gas 
and CO2 sequestration. 

Experimental 

Sample description and preparation 

Three South African coals from at least three different 
coalfields located in the main Karoo basin were used in 
this study. These coals are from Ermelo (Coal EML), 
Somkhele (Coal SML) and Springlake (Coal SPL) and 
were selected based on their coal rank and coal maceral 
compositions. They also represent major commercial coal 
fields in South Africa. In addition, these coalfields have 
been earmarked as potential future CO2 storage sites by 
Viljoen et al.12 (see Figure 1). The CO2 storage potential 
estimates for Somkhele, Ermelo, and Springlake coal-
fields are 82.9, 331.8 and 43.1 Mt respectively. This 
amounts to about a third of the entire CO2 storage poten-
tial in South African coalfields. 

 Coal samples were collected in situ using a hammer 
and a crow bar from respective coalfields. The samples 
were placed in plastic bags, sealed on site and transported 
to laboratory. To avoid atmospheric exposure and prevent 
oxidation, samples were flushed with an inert nitrogen 
gas and then stored in a refrigerator (<3°C temperature 
condition). 

CO2 sorption experiments 

A high-pressure volumetric sorption system (HPVSS) 
was designed, constructed and commissioned to estimate 
the flue gas and CO2 sorption capacity of the coal  
samples. A schematic of the HPVSS is shown in  
Figure 2. 
 The experimental set-up consists of sample drying  
vessel, reactor cell, reference cell and a digital control 
system for pressure and temperature recordings. The ref-
erence and reactor cells were made of stainless steel with 
volumes of 467.2 cm3 and 43.79 cm3 respectively. The 
pressure in the reference and reactor cells was controlled 
and monitored by a digital control system connected to a 
WIKA pressure transducer (model A-10). An SRI  
gas chromatograph (GC) (model 8610) supplied by 
Chromspec Chromatography was connected to the 
HPVSS experimental set-up by a 1/8 inch stainless steel 
tube and was used to measure the flue gas composition 
before and after each sorption test. A data logging system 
connected to the pressure and temperature transducers 
was used to collect the pressure and temperature data 
every five seconds. 
 Pure CO2 sorption isotherms were measured at 30, 40, 
50 and 60°C and at pressures up to ~9.0 MPa. This  
temperature profile is based on the coal reservoir temper-
ature and pressure profiles reported by Zang16, with the 
targeted CO2 sequestration depth of 800 m and  
above 30°C. Therefore, this was taken as the lowest  
temperature. Each sorption test involved eight consecu-
tive procedures: sample degassing; moisture equilibrating 
the sample; filling the reactor cell with coal; reactor cell 
evacuation using a vacuum pump; void volume (Vvoid) de-
termination of the reactor cell filled with a coal sample; 
injecting CO2 into the reference cell; expanding CO2 into 
the reactor cell and, data recording. Each coal sample was 
degassed under vacuum conditions at 130°C and, subse-
quently, moisture equilibrated to 4% using deionized  
water before sorption measurements. Sorption capacity 
and other properties such as density, pore size, surface 
area and porosity for coals could be affected by the pres-
ence of moisture within the sample17; other elucidations 
cannot be precluded entirely; however, residual moisture 
seems to play the most dominant role in affecting the 
sorption capacity on coals18. Each sample was then 
placed inside the sample cell and, thereafter, subjected to 
vacuum for 15 min so evacuate any former gases. The
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Figure 1. Map showing the location of south African coalfields46. 
 

 
 

Figure 2. Schematic of the high pressure volumetric sorption system. 
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Figure 3. Focused area of HPCVSS showing the definitions for the volumetric method for gas sorption measurements28,34. 
 
 
void volume (Figure 3), Vvoid, in the sample cell was  
estimated using the helium expansion approach described 
by Sudibandriyo19. 
 Helium was evacuated and the sorbate (pure CO2 or 
flue gas) was introduced into the system. Nine incremen-
tal pressure steps were preferred for the sorption tests 
where pressure was increased at intervals of ~1.0 MPa 
until 9.0 MPa was reached. During the initial (trial) tests 
run up to 24 h, it was discovered that 90 min was  
adequate for the equilibrium point to be reached. The 
recorded pressure and temperature data was used to esti-
mate the amount of gas sorbed per gram of coal tested. 

Flue gas sorption isotherms measurements 

The flue gas sorption tests of CO2/O2/N2/SO2/NO2 on 
South African coals at 30°C and 60°C, and pressures up 
to 9.0 MPa were conducted at 12/5.5/82/0.38/0.12 mole 
% feed composition. The procedure was exactly similar 
to that of pure gas sorption isotherm measurements. The  
only significant distinction was that after equilibrium 
pressure was reached for each pressure step, the gas  
remaining in the sample cell was diverted via the sample 
valve connector (connected between the reactor cell and 
the GC) to the GC. This was done to determine the un-
sorbed amount of each individual gas. Initially, the flue 
gas was sampled from the cylinder and analysed using the 
GC to determine the composition of gas received from 
the supplier. 

Results 

Proximate and petrographic analysis 

Table 1 shows the maceral composition and proximate 
analysis of the three coals under investigation. Coal SML 
has high vitrinite content (84 vol%) and low inertinite 
(11.5 vol%), Coal EML has high inertinite content 
(74.2 vol%) with low vitrinite content (12.8 vol%), and 
Coal SPL has almost 50/50 vol% for each of vitrinite and 
inertinite contents. Coal SPL will be used as a control 
particularly when discussing the effects of coal macerals. 
It should also be noted that Coal EML has significantly 
high mineral and volatile matters of 9.8 vol% and 
59.8 wt% respectively. 

Table 1. Proximate and petrographic analysis of the coals used 

 Coal ID 
 

Analysis type Coal SML Coal EML Coal SPL 
 

Petrographic analysis (vol%, inc. mm) 
 Vitrinite 84.0 12.8 55.3 
 Inertinite 11.5 74.2 43.3 
 Liptinite 0.0 3.3 0.0 
 Mineral matter 4.5 9.8 1.5 
 Vitrinite reflectance (Ro) 2.24 0.64 3.49 
 
Proximate analysis (wt%, adb) 
 Fixed carbon 74.1 27.8 75.0 
 Moisture 1.0 4.5 1.5 
 Ash 17.3 17.9 12.8 
 Volatile matter 7.6 59.8 10.7 

adb, Air dried basis; inc. mm, Including mineral matter; Ro, Random. 
 
 

Table 2. Summary of pure CO2 sorption capacities 

 Sorption capacity (mmol/g) 
 Temperature (°C) 

 

Sample ID 30 40 50 60 
 

Coal SML 4.16 3.41 2.92 2.54 
Coal SPL 3.85 3.18 2.63 2.37 
Coal EML 3.46 3.02 2.78 2.25 
Reference Figure 4 a Figure 4 b Figure 4 c Figure 4 d 

High-pressure pure CO2 sorption 

The sorption isotherms of high–pressure pure CO2 expe-
riments conducted on moisture equilibrated South Afri-
can coals are shown in Figure 4. These experiments 
reached a maximum CO2 pressure of ~9.0 MPa at all four 
temperatures. All isotherms increased monotonously from 
low to sub-critical pressures and exhibited a monotonous 
asymptotic behaviour at high pressures (<6.0 MPa). The 
behaviour was consistent for all isotherms across differ-
ent temperatures. 
 Table 2 summarizes the CO2 sorption capacities at all 
the 4 temperatures investigated in this study. At the final 
pressures of the sorption isotherms (see Figure 4), the 
sorption capacity of CO2 was determined to range from 
~2.25 to 4.16 mmol CO2/g coal (~0.099–0.183 tonnes of 
CO2 per tonne of coal). The highest sorption capacities
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preferential N2 sorption trend at 30°C. This (coal SPL 
trend) is more evident at high pressures (subcritical to  
supercritical). 
 The CO2 sorption capacities calculated from experi-
mental data range from ~1.30 to 1.55 mmol CO2/g-coal 
(~0.054–0.068 tonnes of CO2 per tonne of coal), and the  
total gas sorption capacity range from ~3.38 to 
3.96 mmol gas/g-coal (see Table 3). As with pure CO2 in-
jection, Coal SML is observed to have the highest total 
gas and CO2 sorption capacities of 3.96 mmol gas/g-coal 
and 1.55 mmol CO2/g-coal respectively. Coal EML has 
the lowest sorption capacities of ~3.38 mmol gas/g-coal 
and 1.41 mmol CO2/g-coal. This trend was also observed 
for pure CO2 injection. 

Comparison of CO2 sorption capacities for pure  
CO2 and flue gas injection 

Figure 8 compares sorption capacities for pure CO2 and 
flue gas on Coal SML. Coal SML was used as basis to 
perform this comparison due to its high sorption capacity 
as discovered in this study. Same trends were obtained 
for the other two coals (EML and SPL). CO2 sorption  
capacity was significantly higher when pure CO2 was  
injected than when flue gas was injected under similar 
conditions of temperature and pressure. This difference 
was calculated to be ~63% average. 
 In the context of total gas uptake (Figure 9), the maxi-
mum amount of gas that could be sorbed by Coal SML at 
30°C and pressures up ~9.0 MPa was 4.16 (0.183 tonnes 
of CO2 per tonne of coal) and 3.96 mmol gas/g-coal 
(0.123 tonnes of gas per tonnes of coal) for pure CO2 and 
flue gas respectively. The difference was calculated to be 
~5% in mole basis (~30% mass basis). 

Discussion 

Proximate and petrographic analysis 

As mentioned earlier, Coal SML has high carbon content 
with low volatile and mineral matter contents. This makes 
it more favourable for sorption of CO2. According to 
Beamish et al.21, microporosity in coals decreases with  
increasing volatile constituents that block the micropore 
structure. This means that the lower the volatile matter 
present in coal, the less the blockage in micropore struc-
ture for CO2 sorption. 
 
 

Table 3. Total gas sorption capacity when injecting flue gas at 30°C 

 Total gas capacity CO2 sorption 
Sample ID (mmol/g) capacity (mmol/g) Reference 
 

Coal SML 3.96 1.55 Figure 6 a 
Coal SPL 3.53 1.30 Figure 6 b 
Coal EML 3.38 1.41 Figure 6 c 

Effects of coal maceral composition 

A common trend was observed for the CO2 sorption  
capacities of the three coal samples. CO2 sorption capaci-
ties increased with increase in vitrinite content up to 
pressures of ~9 MPa and temperatures up to 60°C. This 
trend is in line with previous observations22,23. 
 Clarkson and Bustin22 on Western Canadian Creta-
ceous coals, found an increase in CO2 sorption capacities 
attributed to an increase in vitrinite content of the coal. 
They concluded that the pore structure and gas sorption 
capacity (GSC) are essentially influenced by the coal 
composition. Recently, Maphala23 performed long-term 
CO2 sorption measurements on inertinite-rich and vitri-
nite-rich South African coals. They found that CO2–coal 
interaction is dependent on maceral composition of the 
coal, a vitrinite rich coal has stronger CO2–coal interac-
tion than inertinite-rich coal. 
 Vitrinite maceral mainly contains micropores and  
inertinite predominantly contains macropores and meso-
pores24. Due to its abundant microporosity, which 
 
 

 
 

Figure 8. Comparison of sorption capacities of pure CO2 and flue gas 
at 30°C for moisture equilibrated Coal SML. 

 
 

 
 

Figure 9. Comparison of total gas uptake for Coal SML at 30°C for 
pure CO2 and flue gas. 
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results in high coal total pore area, vitrinite content is 
classified as the single most significant maceral composi-
tion in gas sequestration studies25. Harris and Yust26 
linked the microscopic composition of coals to porosity 
and pore size. Vitrinite therefore contains numerous sorp-
tion sites compared to inertinite and liptinite. According 
to Crosdale et al.27, the variation in CO2 sorption capacity 
is linked to pore structure development, mainly micro-
pores, which depend on the coal type and rank.  
Furthermore, Busch et al.28 ascribe an increase in crystal-
line phase in coal to an increase in CO2 sorption capacity. 
The increase in crystalline phase indicates a dramatic  
decrease in the amount of the volatile matter, and conse-
quently increase in vitrinite character. 
 The effect of maceral composition on GSC is still a 
matter of argument. Even though there is currently unfound 
grounds of the role of coal type (especially the maceral 
composition) on gas sorption capacity and behaviour, many 
researchers in this field22,23,29–33 have speculated that coal 
maceral composition influences the GSC34. 

Effects pressure and temperature 

Both pure CO2 and flue gas sorption isotherms exhibit 
behaviour of a normal Langmuir Type I isotherm up to a 
pressure of ~9.0 MPa (see Figures 4–8). The phenomenon 
at which sorption isotherms display a monotonous  
asymptotic behaviour is observed when the bulk density 
of the gas phase starts to rise faster than the adsorbed 
phase density as a function of pressure35. This phenome-
non is demonstrated in Figure 10 for Coal SML. 
 The present results show a distinct unfavourable effect 
of temperature on gas sorption capacity of coals up to 
pressures of ~9.0 MPa. This is in agreement with pre-
vious studies34,36,37. According to Krooss et al.34, the neg-
ative effect arises because the sorbed phase volume 
decreases with increasing temperature (see Figure 11). At 
lower temperatures the difference in densities between 
free gas phase and sorbed phase tends to be smaller  
(see Figure 10) and the sorption on coal is no longer justi-
fied. 

Preferential sorption 

The sorption capacity of pure CO2 is generally higher 
than the sorption capacity of many flue gas impurities 
(including N2, CH4, SO2, etc.); thus, under competitive 
sorption conditions, CO2 is usually expected to be prefe-
rentially sorbed from any flue gas mixture. Differences 
were observed in the South African coals preferential 
sorption of flue gases at high pressures. There was strong 
preferential sorption of CO2 over other gases. However, 
coal SPL deviated from this trend at low temperatures. 
This implies that, for this flue gas mixture, high sorption 
for CO2 or N2 depends on pressure, temperature, as well 

as coal composition. Hence, the dependence of coal mac-
erals cannot be established at this point. It is probable 
that the preferential sorption of CO2 on coals is more 
complex than initially assumed. 
 Crosdale38 showed that preferential sorption of CO2 
over other gases could be due to faster diffusion rate for 
CO2 as compared to its counterparts. This was substan-
tiated by Busch et al.28 by proving that CO2 consistently 
and significantly reached sorption equilibrium faster than 
CH4. These findings evidently show that coals under  
investigation have high affinity for CO2. 

Implications of direct flue gas injection 

Since the inception of the CCS technology and research, 
a number of researchers39–43 have published the cost esti-
mate for this technology. According to Al-Juaied and 
Whitmore44, CCS technology is estimated to cost 
US$120–180 per tonne of CO2. The cost of capturing 
CO2 is typically the greatest cost of a CCS project due to 
high energy requirements45. According to Rubin et al.43, 
 
 

 
 

Figure 10. Carbon dioxide free gas and sorbed phase density profile 
at 30°C and 60°C. 

 
 
 

 
 

Figure 11. Carbon dioxide free gas volume profile at 30°C and 60°C. 
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the CO2 capture costs range from US$36 to US$53 per 
tonne of CO2; this accounts for approximately 30% of 
CCS technology costs. These figures are expected to re-
main unchanged over the next several decades and are 
based on post-combustion capture of existing supercriti-
cal pulverized-coal fired power plants using bituminous 
coals. 
 In the light of the above-mentioned CCS technology 
costs, omitting CO2 capturing process by applying direct 
flue gas injection into geological formations (in this case 
unmineable coalfields) will make the CCS technology 
more affordable. This study shows that CO2 storage  
potential for Somkhele, Ermelo and Springlake coalfields 
is 82.9, 331.8 and 43.1 Mt respectively. In principle, this 
means that up to ~10.2, 37.2 and 4.741 Mt of flue gas can 
be stored through sorption in Coals SML, EML and SPL 
respectively. 

Conclusion 

This study presents high-pressure pure CO2 and flue gas 
sorption on three moisture equilibrated South African 
coals (Coal SML, coal SPL and coal EML) at 30–60°C 
and at pressures up to ~9 MPa. A comparison of the  
sorption capacities shows strong differences. The CO2 
sorption capacity is, on average, 37% more at lower tem-
peratures (30°C) than at higher temperatures (60°C). The 
capacity increases with increase in pressure until a  
monotonous asymptotic stage is reached from subcritical 
(<6 MPa) to supercritical (9 MPa) pressures. It can be 
concluded that pressure and temperature are one of the 
major controlling factors during CO2 storage in coals. 
 Though the effect of maceral composition of GSC on 
coal is still controversial, results show a positive correla-
tion between the vitrinite content of coals and their CO2 
sorption capacity. 
 All coals exhibited a high preferential sorption for CO2 
for the temperature and pressure range investigated in this 
study. Furthermore, CO2 sorption capacity of coal  
decreased by about 63% when flue gas was injected  
compared to the injection of pure CO2, but the total gas 
sorption capacity of coal decreased by only 5% on mole 
basis. This means that if CO2 is the only targeted gas for 
sequestration, flue gas injection is not recommended as 
an ideal option. However, if other gases are to be injected 
alongside CO2 without discriminating, direct flue gas in-
jection could be a promising option for CO2 sequestration 
in coal seams. 
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