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Halophytes have superior capacity to withstand soil 
salinity and are appropriate resources to study the 
mechanism of salt tolerance which can be harnessed to 
develop crops to withstand salinity. In this communi-
cation, we report the effect of salinity (200 mM NaCl) 
and elevated carbon dioxide (CO2) treatments in tan-
dem, on select halophytes that have different photo-
synthetic pathways: C3 and C4. The plants were 
raised in ambient (380 ppm) and enriched (500 ppm) 
concentrations of CO2 using a mini-FACE facility.  
Total chlorophyll content, total soluble sugar concen-
tration, lipid peroxidation level and electrolyte leak-
age were measured from fresh leaf samples collected 
at different time points. The results show a positive  
effect for elevated CO2 concentration on salt tolerance 
in both C3 and C4 plants, and indicate that halophytes 
may benefit from rising atmospheric CO2 concentra-
tion. The results also suggest that C4 halophytes may 
benefit from the rising atmospheric CO2 concentra-
tion than C3 halophytes. 
 
Keywords: Elevated carbon dioxide, halophytes, salinity, 
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ALTHOUGH the earth’s climate has never been static,  
the planet is currently experiencing faster changes in  
climate/weather patterns than it had in the past, due to  
increased anthropogenic activities. Since the beginning of 
the Industrial Revolution, carbon dioxide (CO2) concen-
tration in the atmosphere has increased from 280 to  
approximately 400 ppm (ref. 1) and is estimated to  
increase by 2.25 ppm each year according to the US   
National Oceanic and Atmospheric Administration 
(NOAA). Increasing concentrations of greenhouse gases 
(GHGs), including CO2 are directly linked to changes in 
temperature, rainfall, near-surface radiation, higher solar 
radiation and desertification2–4. Soil salinization affects 
almost 7% of the total global land area and 20–50% of 

the global irrigated farmland, and is largely due to deser-
tification5. 
 Soil salinity is a major abiotic stress that impacts plant 
growth and productivity6. High salt concentrations  
decrease water uptake leading to water stress and inhibit 
key metabolic processes such as photosynthesis. Soil  
salinization also inhibits plant growth due to osmotic and 
ionic stress7. High soil salinity leads to enhanced produc-
tion of reactive oxygen species (ROS) in plants, which is 
accompanied by increased membrane lipid peroxidation8. 
Most plant species are sensitive to salinity even at low 
concentrations (glycophytes), while some species can  
tolerate and complete their life cycle even at high saline 
concentrations (halophytes). 
 Increase in atmospheric CO2 coupled with salinity adds 
another component to the range of complex physiological 
and morphological responses in plants that directly  
impact photosynthetic processes. Plant response to  
increased CO2 concentration and/or salinity differs, and is 
based on the photosynthetic pathways followed, which 
impacts growth rates and other factors. Most species that 
use the C3, photosynthetic pathway respond favourably 
to elevated atmospheric CO2 (refs 9, 10). However, long-
term exposure to elevated levels of CO2 has been reported 
to substantially suppress photosynthesis11. Many plant 
species that use C4 and CAM pathways respond posi-
tively to increase in atmospheric CO2 too, but the res-
ponses are generally less vigorous than that of C3 
plants12,13. 
 At increased atmospheric CO2 concentration, plants 
perhaps counteract the water stress better, caused due to 
salinity, by reducing transpiration and increasing water 
potential14. As more carbon dioxide is assimilated due to 
greater diffusion of this gas into the leaf, it causes an  
increase in the supply of carbohydrates. Increased carbo-
hydrate concentration will reduce the osmotic potential 
and hence turgor pressure is maintained15. Additionally, 
plants use water more efficiently due to decrease in 
stomatal conductance16,17. Some studies support the  
hypothesis that CO2 enrichment stimulates plant growth 
via increased photosynthesis and not necessarily  
improved water relations18. All these reports point  
towards the need for more comprehensive studies on the 
interactions between elevated CO2 and salinity conditions 
with different plant species. 
 Hence in this study, we evaluated the combined effect 
of salinity and elevated CO2 on photosynthetic pigment 
content, lipid peroxidation level, electrolytic leakage and 
osmolyte concentration (total soluble sugars) of two  
halophytes. Sesuvium portulacastrum (Aizoaceae) is an 
important mangrove-associated, facultative halophyte and 
follows the C3 pathway. This plant has the ability to 
grow under high salinity with lower nutrition availability; 
it is used as a soil cover and landscaping plant, and plays 
a vital role in alleviating saline soil, desalination, desert 
greenification and as an alternative to problem soils in  
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arid and semiarid conditions19. Suaeda nudiflora (Cheno-
podiaceae) is a halophyte that grows in the wild, in the 
high saline and extreme high tidal belt. As the seeds con-
tain approximately 30–35% oil, this plant has a potential 
to be a future oil crop and is also suitable for producing 
high protein biomass in saline soils as it is a C4 plant20. 
Our research findings record plant metabolic responses to 
combined salt and elevated CO2 levels. The changes in 
metabolic and physiological responses between plants 
following the C3 and C4 pathways are presented in this 
communication. 
 Seeds of S. portulacastrum were collected from Tamil 
Nadu and S. nudiflora from Andhra Pradesh, India. The 
seedlings were germinated in vermiculite-filled pots kept 
in plastic trays, in modified Hoagland’s medium21 which 
was changed every week, under greenhouse conditions 
with average temperature of 30C/22C (day/night). The 
CO2 enrichment experiments were conducted at M.S. 
Swaminathan Research Foundation, Chennai, using the 
mini-free air CO2 enrichment (FACE) facility on S. por-
tulacastrum and S. nudiflora. The plants were cultured 
hydroponically in Hoagland’s solution, pH 5.7 (ref. 22). 
The medium was replenished every 14 days and up to  
5 litres of medium was poured daily in each tank to main-
tain the water level lost by evapo-transpiration. After a 
month, plants from two of the four tanks were acclima-
tized to 500 ppm of CO2 during daylight hours for one 
month and labelled as CO2 rings. Plants in the remaining 
two tanks continued to grow under atmospheric air and 
were labelled as ambient rings. After acclimatization, 
200 mM NaCl was added to one tank each from ambient 
and CO2 rings with continued exposure to the gas in the 
CO2 ring. Thus, the treatment conditions imposed were 
ambient control (AC), ambient NaCl (ACS), CO2 (EC) 
control and CO2 NaCl (ECS). The treatments were given 
for three months. The leaf samples from each treatment 
were collected at five time points, i.e. on 30th, 45th, 60th, 
75th and 90th day. 
 Lipid peroxidation was determined by measuring 
malondialdehyde (MDA) content as described by Hodges 
et al.23. Fresh leaves were homogenized in 5% trichloro-
acetic acid (TCA) solution. To 2 ml of extract, 3 ml of 
0.5% thiobarbituric acid (TBA) and 5% trichloroacetic 
acid (TCA) were added, and then heated at 90C  
for 30 min and cooled in ice to room temperature.  
Samples were centrifuged at 5000 rpm for 15 min. The 
supernatant was assayed for absorbance at 450, 532 and 
600 nm. 
 Total soluble sugars were determined following the 
method of Yadav et al.24. Fresh leaves were ground in 
95% ethanol and centrifuged at 3500 g for 10 min. To 
100 l of supernatant 3 ml of freshly prepared anthrone 
reagent was added (150 mg of anthrone in 100 ml of 72% 
H2SO4). The mixture was placed in a boiling water bath 
for 10 min. The reaction was stopped by chilling the 
tubes in ice. Absorbance was estimated at 625 nm. 

 The electrical conductivity was determined as  
described in Lutts et al.25. Leaf discs of similar size were 
washed thoroughly with deionized water. The discs were 
kept in closed vials containing 10 ml of deionized water 
and incubated at 25C on a rotary shaker for 24 h. The 
electrical conductivity (Lt) was determined using conduc-
tivity meter. Samples were autoclaved (120C for 20 min) 
and cooled up to 25C, and electrical conductivity (L0) 
was again measured. 
 The chlorophyll content was determined following the 
method of Arnon26. Leaves (0.5 g) were homogenized in 
80% acetone and incubated for 1–2 h with shaking at 
120 rpm in dark. The homogenate was centrifuged at 
3000 rpm for 5 min in dark and absorbance of the super-
natant was measured at 645 nm and 663 nm. 
 Each experiment was carried out in three biological 
triplicates. All data obtained were expressed as mean,  
SD and subjected to analysis of variance (ANOVA) to 
determine the significance of difference between the 
means of control and treated plants for every set of treat-
ments. A Tukey HSD multiple comparison of mean  
test was used, the means were separated with the least 
significance difference (LSD) test at a confidence level of 
0.05. 
 Chlorophyll content in S. portulacastrum salt-treated 
leaf tissue (SpACS) was less than control leaves (SpAC) 
at 30 days interval, but as the treatment progressed the 
treated samples showed more chlorophyll content than 
control samples. S. portulacastrum plants treated with  
elevated CO2 (SpEC) had less chlorophyll content than 
that of control plants (SpAC) on days 30, 45 and 60 of 
treatment. However, subsequently they showed an  
increase in chlorophyll content with 31.81% and 41.57% 
increase on day 75 and day 90 samples respectively, 
compared to SpAC samples. Under salt and elevated CO2 
treatment, chlorophyll content of S. portulacastrum plants 
(SpECS) showed increase at all time points except  
day 60, compared to SpAC, SpACS and SpEC plants 
(Figure 1). 
 Chlorophyll content in S. nudiflora plants treated with 
salt (SnACS) showed slight increase at days 30 and 45 
compared to control plants (SnAC), but at later time 
points of treatments it showed a sharp decrease. Under 
treatment of elevated CO2, S. nudiflora samples (SnEC) 
showed an increase in chlorophyll content compared to 
control samples (SnAC) at all time points analysed, with 
140.19% increase in chlorophyll content at day 90 of 
treatment. Under combined treatment of salt and elevated 
CO2, S. nudiflora plants (SnECS) showed less chloro-
phyll content than SnEC samples at days 30, 45 and 60, 
but showed increase on days 75 and 90. Similarly, chlo-
rophyll content of SnECS samples was greater than SnAC 
and SnACS samples at later stages of treatments. At days 
75 and 90 of treatment, SnECS, samples showed 282.75% 
and 364.66% increase in chlorophyll content respectively, 
compared to SnACS samples (Figure 1). 
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Figure 1. Effect of salt treatment and/or elevated CO2 on total chlorophyll content of Suaeda nudiflora. Vertical 
bars indicate standard errors of the mean for each treatment. Values indicate significant differences between 
treatments based on LSD values (P < 0.05). 

 
 

 
 

Figure 2. Effect of salt treatment and/or elevated CO2 on malondialdehyde (MDA) content of S. nudiflora. Ver-
tical bars indicate standard errors of the mean for each treatment. Values indicate significant differences between 
treatments based on LSD values (P < 0.05). 

 

 Lipid peroxidation analysis of S. portulacastrum salt-
treated leaf tissue (SpACS) showed an increase in MDA 
content on days 30, 45 and 60 of salt-treatment, and  
decrease on days 75 and 90 compared to SpAC samples. 
Under the treatment of elevated CO2, MDA content in 
SpEC plants was less than SpAC plants in all time points, 
except for a slight increase (8.41%) at day 75. S. portula-
castrum leaf tissue under the combined treatment of ele-
vated CO2 and salt (SpECS) showed less MDA content at 
days 45, 60 and 90 compared to SpACS and SpAC sam-
ples (Figure 2). 
 In S. nudiflora plants, after salt treatment (SnACS) 
MDA content was less than that in control plants (SnAC) 

at all time points. Similarly, MDA content after elevated 
CO2 treatment (SnEC) was higher than control (SnAC) at 
all stages of treatment, except on day 30. Plants under  
elevated CO2 and salt treatment (SnECS) had reduced 
MDA content than those under salt treatment (SnACS) at 
all time intervals, except day 45, where it showed a mild 
increase in MDA content. SnECS samples had less MDA 
than SnAC samples at all time points, and the percentage 
of decrease was higher than that in S. portulacastrum at 
corresponding time points (Figure 2). 
 Electrical conductivity measurements on S. portulaca-
strum showed that samples treated with salt (SpACS) 
showed a higher value at all time points compared to 
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Figure 3. Effect of salt treatment and/or elevated CO2 on electrical conductivity of S. nudiflora. Vertical bars 
indicate standard errors of the mean for each treatment. Values indicate significant differences between treat-
ments based on LSD values (P < 0.05). 

 
 

 
 

Figure 4. Effect of salt treatment and/or elevated CO2 on total soluble sugars of S. nudiflora. Vertical bars indi-
cate standard errors of the mean for each treatment. Values indicate significant differences between treatments 
based on LSD values (P < 0.05). 

 
 
control (SpAC), but the difference was less marked on 
day 90. Elevated CO2 treatment (SpEC) showed increase 
in electrical conductivity at three time points and de-
crease at two time points compared to SpAC. Combined 
treatment of elevated CO2 and salt (SpECS) resulted in  
increased electrical conductivity at all time points com-
pared to SpAC, but the percentage of increase was less 
than that shown by salt alone (SpACS) at later time 
points (Figure 3). 
 S. nudiflora samples under salinity (SnACS) showed 
increase in electrical conductivity compared to control 

(SnAC) at all time points, except on day 30. Elevated 
CO2 treatment (SnEC), however, increased electrical 
conductivity at three time points and decreased it at two, 
compared to control (SnAC). Combined treatment of salt 
and elevated CO2 (SnECS) reduced the electrical conduc-
tivity at all time points, except day 45, compared to salt 
treated samples (SnACS; Figure 3). 
 Quantification of total soluble sugars in S. portulaca-
strum under salinity (SpACS) showed a higher value 
compared to control (SpAC) samples at all time points, 
although the difference was less marked on days 75 and 
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90 of treatment. Under elevated CO2 treatment (SpEC), 
however, total soluble sugars were found to be less than 
in SpAC samples at three time points. Total soluble  
sugars after treatment with elevated CO2 and salt 
(SpECS) was found to be less than SpACS and SpAC at 
all time points (Figure 4). 
 Measurement of total soluble sugars in S. nudiflora  
after salt treatment (SnACS) decreased at initial  
time points and increased at later time points compared  
to control (SnAC) samples. Treatment with elevated  
CO2 (SnEC) decreased total soluble sugars at all time 
points compared to SnAC. Elevated CO2 treatment  
along with salt treatment (SnECS) reduced total soluble 
sugars at all time points compared to SnACS and SnAC 
(Figure 4). 
 Abiotic stresses, namely drought, salinity, extreme 
temperature, etc. are known to reduce the contents of 
photosynthetic pigments. The initial decrease in chloro-
phyll content in S. portulacastrum after salt treatment  
followed by increase at later time points indicate that the 
plants are probably acclimatizing to the stress after the 
initial shock. The observations also show a positive effect 
of elevated CO2 concentration on chlorophyll content as 
the length of treatment increased. Increased CO2 concen-
tration during salt treatment had a positive effect on  
chlorophyll content and indicates that the plants might 
survive salt treatment better under these conditions. Con-
trary to the results for S. portulacastrum, S. nudiflora 
plants showed higher chlorophyll content at initial stages 
of treatment indicating better initial stress tolerance. 
However, the sharp decrease in chlorophyll content at 
later stages indicates that prolonged salt stress is perhaps 
more deleterious to S. nudiflora. The percentage increase 
in chlorophyll content in S. nudiflora was much higher 
than S. portulacastrum at corresponding time points  
under the treatment of elevated CO2, indicating a more 
positive effect on chlorophyll content in S. nudiflora than 
S. portulacastrum. This is in accordance with the report 
on studies on maize (C4 plant) and soyabean (C3 plant) at 
elevated CO2 treatment27. Salinity reduced the positive 
effect of chlorophyll content with elevated CO2 treatment 
in the initial stages of stress. However, at later stages of 
stress, elevated CO2 treatment was shown to have a high 
positive effect on chlorophyll content in S. nudiflora 
plants under salinity. 
 It is well documented that increased levels of toxic  
cation, Na+ under salt stress leads to breakdown of chlo-
rophyll (Chl)28 and reduction in photosynthetic pigments, 
such as Chl a and b under abiotic stresses has been re-
ported in many crops29–32. The salt-induced alterations in 
leaf chlorophyll content could be due to impaired chloro-
phyll biosynthesis or accelerated pigment degradation. 
Researchers have shown decrease in chlorophyll precur-
sors such as glutamate and 5-aminolaevulinic acid (ALA) 
under salt stress, indicating that salinity affects chloro-
phyll biosynthesis more than chlorophyll breakdown29,33–35. 

Although salt stress reduces the chlorophyll content, the 
extent varies based on salt-tolerance of the plant species. 
Chlorophyll content was shown to increase in salt-
tolerant species and decrease in salt-sensitive species  
under salinity29,36,37. Hence, accumulation of chlorophyll 
serves as a useful biochemical indicator of salt tolerance 
in crops29,38–40. 
 Plants respond to environmental stresses through  
generation of ROS which cause oxidative damage to 
many cellular components, including membrane lipids. 
Lipid peroxidation levels, measured as MDA content, 
have been considered as an indicator of salt-induced oxi-
dation in cell membranes and a tool for determining salt 
tolerance in plants41–43. 
 Salinity initially increased the level of lipid peroxida-
tion in S. portulacastrum. However, at later stages of 
treatment, a decrease was observed, possibly due to the 
plants acclimatizing to the stress. Treatment with elevated 
CO2 reduced the level of lipid peroxidation in the plants 
compared to the untreated plants, indicating that elevated 
CO2 could be beneficial to the species when the plants are 
not under stress. Elevated CO2 was found to have a posi-
tive effect on limiting salt-induced lipid peroxidation at 
later stages of stress. Similar to S. portulacastrum results, 
elevated CO2 showed a positive effect on limiting salt-
induced lipid peroxidation at all stages of stress treat-
ments in S. nudiflora. 
 Soluble sugars play a major role in the synthesis of 
other compounds, production of energy, stabilization of 
membranes, etc. and act as signal molecules and regula-
tors of gene expression44,45. Carbohydrates help in the 
maintenance of osmotic balance, osmoprotection and 
ROS scavenging, and in carbon storage during stress46. 
Soluble sugars have been shown to be responsible for up 
to 50% of the total osmotic potential in glycophytes sub-
jected to saline stress47–52. Hence soluble sugar content is 
a good indicator of abiotic stress tolerance in plants. In 
durum wheat, for example, soluble sugar content was a 
better marker for selecting drought-tolerant cultivars than 
proline content53. 
 Our results showed that under salinity, higher amount 
of total soluble sugars was present in S. portulacastrum. 
However, elevated CO2 treatment did not show increase 
in total soluble sugars, and total soluble sugars in samples 
treated with elevated CO2 and salt were found to be less 
than that in control samples. Similar results were observed 
in S. nudiflora. This corroborates with an earlier report 
analysing the growth and carbohydrate metabolism in 
three rice cultivars differing in salinity stress tolerance, 
which reported increased concentration of sugars in re-
sponse to salinity stress only in sensitive cultivar and not 
in tolerant cultivars54,55. Another report on tomato 
showed that salt-sensitive cultivar was able to accumulate 
hexoses and sucrose under salinity stress treatments while 
in salt-tolerant cultivar, their concentrations remained un-
changed or decreased56. A decrease in total soluble sugars 
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in this study is probably due to salt-tolerant nature of the 
selected plants. 
 Electrolyte leakage is widely used as a measure for 
stress-induced injury of plant tissues and as an indicator 
of plant stress tolerance. The electrolyte leakage is ubi-
quitous among different species, tissues and cell types, 
and can be triggered by all major stress factors, including 
pathogen attack, salinity, heavy metals, oxidative stress, 
high soil acidity (pH < 4), wounding, waterlogging, 
drought, heat and others57. Reduced electrical conductivity 
of salt-treated samples at elevated CO2 showed a positive 
effect for elevated CO2 treatment in salt tolerance of S. 
nudiflora and S. portulacastrum. 
 Elevated CO2 concentration is effective in offsetting 
physiological damages due to salinity stress in the plants 
studied, indicating that halophytic plants may gain from 
rising atmospheric CO2 concentration in the scenario of 
climate change. This study shows significant differences 
in responses of plants following C3 and C4 pathway, to 
salt and/or elevated CO2 treatments. S. nudiflora (C4) 
was more sensitive to 200 mM NaCl than S. portulacas-
trum (C3), as indicated by significant decrease in total 
chlorophyll content and significant increase in MDA con-
tent. Elevated carbon dioxide ameliorates the effects of 
salt in the selected plants. This positive effect of elevated 
CO2 was more significant in C4 (S. nudiflora) plant on 
extended exposure time than in plants following the C3 
pathway, where the positive effects of elevated CO2 in 
salt treatment were more gradual. Both plants showed 
negative and varying response at the 30 day (initial time 
point) time point, to salt under elevated CO2 which turned 
to positive and uniform at longer, extended time points. 
This suggests that 500 ppm of CO2 takes a longer time to 
show a positive effect on these select halophytes differing 
in their photosynthetic pathways. In the context of accel-
erated climate change, these results indicate that pro-
longed atmospheric CO2 enrichment may provide greater 
protection to the salt-sensitive C4 halophytes than the 
less-sensitive C3 halophytes. These results pave the way 
for a better understanding of plant responses to salinity 
under increased atmospheric CO2 concentration. 
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