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A large number of spliceosomal proteins are required
for proper RNA splicing. While spliceosomal proteins
from several model organisms have been analysed,
only limited studies are available for fungal species.
Hence, we have performed a comparative genomic
analysis using eight fungal species belonging to three
taxa (Ascomycetes, Basidiomycetes and Glomeromy-
cota). We identified variable number of spliceosomal
proteins in fungal species. From the small nuclear
ribonucleoproteins (snRNPs), all the snRNPs were
identified. In non-snRNPs, only some sub-groups were
found extensively conserved in all fungal species, in-
cluding PRP19 complex proteins, catalytic step 1l and
late-acting proteins. In heterogeneous nuclear ribonu-
cleoproteins (hnRNPs), variable number of proteins
was identified. The number of spliceosomal proteins
identified in filamentous fungi was higher than that in
yeast. The collection of these spliceosomal proteins pro-
vides further insight into pre-mRNA splicing in fungi.
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IN eukaryotes, genes are interrupted with non-coding
sequences (introns), which are transcribed into pre-mRNA
in the nucleus. The pre-mRNA is then processed and this
results in the splicing out of introns to give yield a mature
mRNA. This process, called splicing®, serves as one of
the hallmarks of eukaryotic genetics and is a crucial
mechanism for eukaryotic messenger RNAs before they
get translated into functional proteins?. This process is
catalysed by the spliceosome, a multi-component macro-
molecular machine®®. The spliceosome is a multi-mega-
dalton ribonucleoprotein (RNP) complex comprising of
pre-mRNA template, small nuclear ribonucleoproteins
(snRNPs) and different non-snRNPs“®. Further back-
ground of different groups of spliceosomal proteins is
provided below and in Supplementary Section 1.

The snRNPs are core constituents of the spliceosomal
complex which regulate pre-mRNA splicing and are com-
prised of a unique small nuclear ribonucleic acid (SnRNA),
a common set of Sm proteins (Sm-B/SmB’, SmDI,
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SmD2, SmD3, SmE, SmF and SmG) and diverse number
of snRNP specific proteins’. The U2 dependent spliceo-
some is assembled from the U1, U2, U5, U4/U6 snRNPs,
and an abundant number of non-snRNP proteins. In con-
trast, the Ul12-dependent spliceosome is assembled from
U11, U12, U5 and U4atac/U6atac snRNPs®. These differ-
ent snRNPs are classified into Sm/LSm core proteins, U1,
U2, U5, U4/U6 specific proteins and tri-snRNP specific
proteins®.

Sm/LSm proteins are present ubiquitously in eukary-
otes. They interact with RNAs to make complexes, thus
taking part in nearly every cellular process. Due to struc-
tural similarity with Sm proteins, they are called ‘Like
Sm’ or ‘LSm’ proteins®. Sm proteins are a set of small
polypeptides that play a critical role in gathering the U1,
U2, U5 and U4/U6 snRNPs for pre-mRNA splicing™®. Sm
proteins are differentiated into seven sub-classes based on
human Sm proteins, which are known as SmB, SmD1,
SmD2, SmD3, SmE, SmF and SmG. There are a total of
nine LSm proteins (LSm1 to LSm9) existing in S. cere-
visiae, of which, LSm2 to LSm7 appear to be very
similar to SmD1 to SmG respectively'’. In contrast,
LSm1 and LSm8 seem to be more similar to the SmB
sub-family**2,

The Ul snRNP is a vital member of the spliceosomal
snRNPs. Human U1l snRNP consists of several specific
and unique snRNPs including 164-nucleotide Ul small
nuclear RNA (U1SnRNA)™. In metazoans, splicing
mechanism is initiated by U1snRNA (part of U1 snRNP),
by recognizing 5’-splice-site (5'-ss) and forming the E-
complex. Subsequently, this base pairing of UIRNA is
stabilized by Ul snRNP specific proteins named U1-70K
and U1-C’.

U2 snRNP firmly associates with the branching site®*
after the U1 snRNP, forming pre-spliceosomal complex
A or pre-spliceosome complex. U2 snRNP plays a main
part in splicing after the dissociation of Ul and U4
snRNP from pre-mRNA. A wide ranging base pairing
system and conformational changes are shaped between
U6 and U2 snRNP, which juxtaposes the branch site (BS)
and 5'-ss for the initial step of splicing®.

Many eukaryotic genes are expressed as precursor
mRNAs by RNA polymerase IlI, which are further
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processed into mature mRNA by splicing. These mRNA
precursors primarily produced by RNA polymerase Il
are accompanied by proteins in large complexes®, and
collectively termed as hnRNPs'®.

The hnRNPs encompass a family of RNA-binding pro-
teins, which is very complex and diverse. It is associated
with several functions like processing heterogeneous
nuclear RNAs (hnRNAs) into mature mRNAs or acting
as trans-factors in regulating gene expression™. In the
nucleus, they primarily participate in RNA splicing®’, and
transcriptional regulation'®. Moreover, some members of
the hnRNP family are required for alternative splicing.
For example, hnRNP Al can regulate 5'-ss selection with
the help of splicing factor SF2 (ref. 19).

Previous studies on spliceosomal proteins have focused
solely on a limited number of model organisms like
Homo sapiens, Arabidopsis thaliana, flies, yeast and Dic-
tyostelium discoideum®. The available data on these
model organisms have improved the understanding of
splicing mechanism on a molecular level. However, very
little is known about pre-mRNA splicing in fungi with
the exception of baker’s yeast (Saccharomyces cere-
visiae). Herein, we present a comparative genomic anal-
yses of fungal spliceosomal proteins using eight different
species.

Material and methods

We scanned eight fungal genomes (Table 1) for their
putative spliceosomal proteins using different homology
detections (Supplementary Figure 1) as described in
the Supplementary Section 2. Pfam domain and phylo-
genetic analyses were performed using HMMER 3.0
(ref. 20) under CLC bio genomics workbench 7.5
(www.clcbio.com) and MEGA6 tool? respectively. A
comprehensive approach is provided in the Supple-
mentary Section 2.

Results
Status of spliceosomal snRNP proteins

There are a total of 49 human snRNP proteins, which are
categorized into different sub-groups like U1, U2, U5,
U4/U6, U4/U6.U5 specific proteins and Sm/LSm pro-
teins®. All sequences of these 49 human snRNP proteins
were used to screen the proteomes of eight different fun-
gal species.

Summary of Sm/LSm core proteins

The sub-group of Sm/LSm core proteins comprises 15
proteins, 7 in the LSm family and 8 in the Sm family’.
We identified at least one homologue in all fungi ana-
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lysed (Table 2). All the studied fungal species led to simi-
lar orthologs when searched with either the human
SmB/B’ or SmN proteins (Table 2 and Figure 1 a).

The Sm/LSm proteins in the studied fungal species
showed a one-to-one relationship with their human coun-
terparts, except for some proteins in N. crassa, R. irregu-
laris and R. solani. These proteins include SmD1, LSm2,
LSm5 and LSm8, which were found to be duplicated
when compared to their single human counterparts. Two
homologues of human LSm7 and LSm6 proteins were also
identified in R. irregularis and R. solani respectively. The
two copies of LSm6 protein found in R. solani were
100% identical. The close one-to-one relationship of
LSm3 and LSm4 proteins between human and fungal
species from different phyla is illustrated in the phylo-
genetic tree (Figure 1 b).

Pfam domain analysis with these core proteins clearly
depicts the predominant presence of a LSM (PF01423)
domain. LSM (like Sm) have diverse functions, and are
key regulators of RNA biogenesis and splicing™®.

Overview of U1, U2 and U5 snRNPs specific
proteins

There are six, twelve and eight different proteins present
in human U1, U2 and U5 snRNPs respectively. Searches
employing human U1-snRNPs gave rise to a one-to-one
relationship between human and different fungal species
(Table 3) with the exception of the gene encoding CROP
protein, which is duplicated in R. irregularis.

Pfam domain analysis with U1 snRNPs revealed that
every protein from this group has a combination of
known protein domains (Figure 2 a), which are crucial for
splicing. SNRP70 protein has two domains: U1snRNP70
(Pfam domain ID. PF12220) and RNA recognition motif
(RRM) (PF00076). Both these domains are often found in
association. U1 snRNP70 wraps around the core domain
of Ul snRNP and eventually interacts with U1-C, which
is important for 5’-ss recognition®’. SNRPC protein con-
sists of zf-U1 domain (PF06220), a domain largely found
in U1 which binds to the pre-mRNA 5'-ss at the initial
stages of spliceo some assembly®>. SNRPA protein con-
sists of a single RRM domain (PF00076). This RRM
domain is found in several RNA binding proteins, includ-
ing protein components of sSnRNPs involved in regulating
alternative splicing and hnRNP proteins®*.

In U2 snRNP, several proteins have a one-to-one rela-
tionship between human and the studied fungal species
except for SF3b49 (Hsh49p), SF3a66 (Prpllp) and
SF3b130 (Rselp). These three proteins are duplicated in
the N. crassa genome. Interestingly, there were also some
proteins from this group not identified in some fungal
species like SF3a60 (Prp9p), SF3b49 in R. irregularis,
SF3b14b (Rds3p) in R. solani and SF3b10 (na), SF3bl4a
(na) in S. cerevisiae (Table 4).
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Figure 1.

Phylogenetic analyses of Sm/LSm proteins of human and several fungal species of different phyla. a, Evolu-

tionary history of fungal SmB (SNRPB) and SmN (SNRNP). One-to-one orthologs of these two human genes SmB
(SNRPB) and SmN (SNRNP) were detected in the studied fungal genomes. b, Phylogenetic tree of LSm3-LSm4 proteins.
One copy each of these two genes were detected in fungal genomes.

Pfam domain analyses of the U2 snRNP show that the
RRM domain frequently occurs in proteins of different
species. The RRM domain is found in several proteins of
this group like SNRPB2, SF3B4 and SF3B14 (Figure
2b). The SNRPAL protein consists of a leucine rich
repeat (LRR) domain (PF14580), which is often involved
in the formation of protein—protein interactions®. The
SF3A1 protein comprises two domains: PRP21
(PF12230) and Surp (PF01805), which are consistently

CURRENT SCIENCE, VOL. 114, NO. 8, 25 APRIL 2018

seen in association. The PRP21 (PF12230) domain of
SF3A1 protein plays a critical role in the assembly of the
pre-spliceosome, whereas the Surp (PF01805) domain is
found in regulatory proteins of splicing. The SF3a3 pro-
tein comprises three domains, namely SF3a60 (PF12108),
zf-C2H2 (PF12171) and DUF3449 (PF11931). The SF3a60
domain is essential for splicing and participates in form-
ing the SF3a complex by providing a binding site
for SF3al20 (ref. 27). Likewise, SF3B2 protein
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Figure 2.

Overview of Pfam protein domains identified in different groups of snRNPs in human and different

fungal genomes. a, U2 snRNPs; b, U5 snRNPs; ¢, U1 snRNPs.

contains two domains, PSP (PF04046) and DUF382
(PF04037). PSP is a proline-rich domain of unknown
function found in spliceosome-associated proteins, while
DUF382 domain is specific to the human splicing factor
3b subunit 2 (ref. 28). SF3A2 protein consists of single
zf-met (PF12874) domain. This zf-met domain is found
in multiple copies in several proteins from plants to met-
azoans and considered to be an RNA-binding domain.
Similarly, SF3B5 protein consists of a single SF3b10
(PF07189) domain, a subunit of splicing factor SF3b.

1682

SF3b associates with splicing factor SF3a and a 12S RNA
unit to form the U2 snRNP complex essential for splicing?.
The PHF5A protein contains a PHF5 (PF03660) domain.
PHF5 belongs to the superfamily of PHD-finger proteins
and is vital for splicing®®. Moreover, SF3B3 protein
comprises two domains named MMS1 (PF10433) and
CPSF_A (PF03178). MMSL is reported to protect against
replication-dependent DNA damage in S. cerevisiae®,
whereas CPSF domain is required for splicing of single-
intron pre-mRNAs®. A number of proteins of the U5

CURRENT SCIENCE, VOL. 114, NO. 8, 25 APRIL 2018
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SNRNP sub-group have shown similar one-to-one rela-
tionship like U1 and U2 snRNP proteins, except few pro-
teins like U5-15 kDa or/fand U5-200 kDa. These two
proteins have paralogs in N. crassa and R. irregularis.

However, a few proteins were not identified in some of
the fungal genomes like U5-52 kDa in U. maydis or and
U5-40 kDa in S. cerevisiae (Supplementary Table 2). The
fungal proteins of this group have similar domains as
their human counterparts (Figure 2 c). The CD2BP2 (U5—
52 kDa) protein has shown a single GYF domain
(PF02213) identified in human and in the studied fungal
species. The GYF domain is found in several eukaryotic
proteins and it has been proposed that it may play a role
in proline-rich sequence recognition®*®, The TXNL4A
(U5-15 kDa) protein possesses a DIM1 (PF02966) do-
main, which has been identified in human and all studied
fungal species. The human TXNL4A protein contains 37
extra residues that form putative binding sites for other
spliceosomal factors®*. Moreover, four domains were
identified (Figure 2c) in the SNRNP200 (U5-200 kDa)
protein in humans and all the analysed fungal species,
which include Sec63 (PF02889), DEAD (PF00270),
Reslll (PF04851) and Helicase (PF00271). The Sec63
domain is essential for the assembly of functional endo-
plasmic reticulum translocons®*®; whereas in yeast this
domain is found in pre-mRNA splicing proteins. The
DEAD domain is involved in several aspects of RNA me-
tabolism®®. In the PRPF6 (U5-102 kDa) protein, two
domains named PRP1 (PF06424) and TPR (PF13181)
were identified. PRP1 is involved in mRNA splicing,
RNA nuclear export and cell cycle progression®®, whereas
the TPR (tetratricopeptide repeat) domain is a structural
motif found in several proteins®.

In the DDX23 (U5-100 kDa) protein, DEAD and Hel-
icase domains were conserved in humans and included
fungi (Figure 2c). The PRPF8 protein consists of seven
Pfam domains, which include PROCN (PF08083), PRP8
(PF12134), U6-snRNA (PF10596), PROSNT (PF08082),
U5 snRNA (PF10597), PROCT (PF08084) and RRM
(PF10598) domains. PROCN is the vital domain in the
PRO8 family and involved in pre-mRNA splicing®".
PRP8 is a selenomethionine domain and assumed to be

CURRENT SCIENCE, VOL. 114, NO. 8, 25 APRIL 2018

b

SNRNP2T

Summary of Pfam protein domains present in different groups of snRNP proteins in human and different
fungal genomes. a, U4/U6 snRNPs; b, U4/U6.U5 tri-snRNP.

interacting with the spliceosomal core*?. In the SNRNP40
(U5-40 kDa) protein, a WD40 domain was identified
throughout all the analysed species. The EFTUD2 (U5-
116 kDa) protein possesses five domains, which include
GTP_EFTU (PF00009), EFG_IV (PF03764), EFG_C
(PF00679), EFG_IlI (PF14492) and GTP_EFTU_D2
(PF03144) in the analysed species.

Summary of U4/U6 di-snRNP, U4/U6 and
U5 tri-snRNP specific proteins

There are five and three specific proteins belonging to
U4/U6 di-snRNP and U4/U6.U5 tri-snRNP sub-groups
respectively®. Three among five U4/U6 di-snRNPs have
counterparts in all the analysed fungal species. In contrast,
a protein named U4/U6-20 kDa (Cphlp) is found to have
a paralog in some species including B. botryobasidium,
U. maydis and R. irregularis (Supplementary Table 2).
Pfam domain analyses of these proteins have identified
similar domains for each protein in the species used in
this study (Figure 3a). The PRPF3 protein from this
group carries two domains: PRP3 (PF08572) and
DUF1115 (PF06544). The PRP3 domain is a U4/U6-
associated splicing factor’®, whereas the functions of
DUF1115 are still unknown. The PPIH protein consists of
a single domain named proisomerase (cyclophilin type
peptidyl-prolyl cis-trans isomerase, PF00160), which
facilitates chaperone and cell signalling®. The NHP2L1
protein has aribosomalL7Ae (PF01248) domain, whereas
the PRPF4 protein includes a PRP4 (PF08799) and a
WD40 (PF00400) domain. PRP4 is a U4/U6 snRNP that
is involved in pre-mRNA processing, whereas WD40 is
involved in several functions®. The PRPF31 protein in-
cludes three domains named NOSIC (PF08060), Nop
(PF01798) and Prp31 (PF09785). The Nop domain is a
part of pre-RNA processing ribonucleoproteins, whereas
Prp31 is required for the U4/U6.U5 tri-snRNP formation®.
In the U4/U6.U5 tri-snRNP group, all human proteins
have orthologs in the analysed fungal species except the
tri-snRNP 65 kDa (Sadlp) protein. No ortholog for this
protein was identified in N. crassa and S. cerevisiae.
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Moreover, the tri-snRNP 110 kDa (Snu66p) geneis dupli-
cated in R. solani (Supplementary Table 3).

In the different proteins of this group, similar domains
were identified for each human and corresponding fungal
protein (Figure 3b). The SART-1 protein contains a domain
(PF03343), which has been reported to be involved in cell
cycle arrest and pre-mRNA splicing”’. The SNRNP27
protein has a domain of unknown function. The USP39
protein carries two domains, zf-UBP (PF02148) and UCH
(PF00443). The zZf-UBP domain is known to cleave iso-

peptide bonds between ubiquitin moieties*®“°.

Fungal non-snRNP proteins related to spliceosomal
assembly and splicing

We queried 105 human non-snRNP proteins and searched
for homologs in different fungal genomes. With non-
snRNP spliceosomal proteins, several human proteins
have homologs in the analysed fungal species, except in
S. cerevisiae. There was quite a significant difference in
the number of non-snRNPs identified in filamentous fun-
gi and yeast. All non-snRNP proteins were compiled in
different tables (Supplementary Tables 4-10).

Three SR and SR related proteins were identified in all
filamentous fungi. However, no homologs of these three
proteins were identified in yeast (Supplementary Table
4). Pfam domain analysis depicted the dominant presence
of a RRM domain in all three proteins (Supplementary
Table 11).

Subsequently, seven human PRP19 complex associated
proteins were queried on the studied fungal species. All
seven proteins have orthologs in the analysed fungal spe-
cies (Supplementary Table 5). The conservation of this
group of proteins is high in all fungal species. Pfam do-
main analyses identified similar domains for each protein
of this group. In the tPrp19 protein, two Pfam domains
were identified as Prpl9 (PF08606) and WD40
(PF00400). Prp19 forms an oligomer that is essential for
spliceosomal assembly®®, whereas a WD40 Pfam domain
is found in Prp46 protein. The CDC5 protein comprises
two domains namely MybCef (PF11831) and
MybDNAbind (PF13921). MybCef is found in Myb-
related Cdc5p/Cefl proteins and plays a significant role
in pre-mRNA splicing factor complex®, whereas
MybDNAbind is a DNA binding domain®*. In the fSap33
protein the ISY (PF06246) domain was identified in all
the analysed fungal species. Isyl is crucial for optimiza-
tion of splicing®. Likewise, in SYF1 and Crn protein,
TPR and HAT domains were identified in all the analysed
genomes (Supplementary Table 12).

Additionally, we examined status of the catalytic step
Il and late-acting proteins (Supplementary Table 13),
exon junction complex (EJC) proteins (Supplementary
Table 14) and other classes of non-snRNPs (Supple-
mentary Table 15) as described in the Supplementary
Sections 3-5.
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Similarly we have supplemented detailed information
about hnRNP proteins (Supplementary Section 6) and
about the fungal proteins involved in alternative splicing
(Supplementary Section 7). Majority of these proteins are
present in fungi with exception in yeasts.

Discussion

In the current study, we have analysed 192 different types
of spliceosomal proteins from 8 fungal species belonging
to various order divisions like Ascomycetes, Basidiomy-
cetes and Glomeromycota.

There are 49 snRNP proteins which are further classi-
fied into different sub-groups like Sm/LSm core proteins,
U1, U2, U5, U4/U6, U4/U6.U5 tri-snRNP. In this study,
we demonstrated that sSnRNP proteins are present in fun-
gal species. The extensive presence of snRNPs suggests
that snRNPs play a significant role in regulating and cata-
lysing the fundamental mechanism of splicing. However,
the number of snRNPs identified in yeast differs slightly
from earlier data®, this only identified only 43 snRNPs.
The two additional proteins identified in our study are U5
snRNP specific U5-52 kDa (CD2BP2) and Ul snRNP
specific ULA (SNRPA). This may be due to the use of
human protein sequences as query, when compared to Yu
et al.®, where amoeboid protozoan Dictyostelium dis-
coideum protein sequences were used.

We analysed a total of 105 non-snRNP proteins associ-
ated with spliceosomal assembly and splicing in different
species of fungal classes. The number of non-snRNP
orthologs identified in all the analysed filamentous fungi
is significantly different when compared to yeast. Several
non-snRNP proteins do not have orthologs in yeast.

SR (serine/arginine-rich proteins) and SR-related
proteins play a significant role in regulating both alterna-
tive splicing and constitutive splicing®. All three queried
proteins identified orthologs in the selected species. No
protein in this group had an ortholog in yeast. This fits
the fact that splicing in yeast is a rarely occurring mecha-
nism due to its intron-poor genome®”.

EJC assembly is a significant step of splicing®®. All
five human EJC proteins have orthologs in the analysed
fungal species except yeast (Supplementary Section 4).
Only one ortholog was identified in yeast. This again may
indicate that processing of RNA is more complex in fila-
mentous fungi than in yeast.

A number of other spliceosomal proteins were identi-
fied in the examined fungal species. Human proteins with
a DExD/H motif have orthologs in all the analysed fungal
species except some proteins like DICE (INTS6) and
FLJ41215 (DDX26B). Cyclophilins belong to the proteins
catalysing peptidyl-prolyl cis-trans isomerase activity**.
Human cyclophilins and polyadenylation motif-contain-
ing proteins have orthologs in the fungal species with
some exceptions to yeast. This includes CyP60 (PPIL2),
CyPJ (PPIL2) and NY-CO-10.
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Overall, we found that spliceosomal proteins have dif-
ferent protein domains (Figures 2-3). Majority of these
proteins were conserved in several fungal species and
most of these proteins possessed more than one protein
domain (Figures 2 and 3). Homologous proteins have
conserved domains such as in SNRPB2 and SF3B4 (Fig-
ure 2) and in PRPF40A/B (Figure 2). The conserved do-
mains of different spliceosomal proteins assisted the
orthology assignments for putative homologs in analysed
fungal genomes.

Intron-poor organisms lack several of these proteins as
exemplified by the dataset from yeast. A similar case was
reported for intron-poor Giardia lamblia, a human intes-
tinal parasite. Bordonné et al.> reported on roles of the
protein domain of PRP4 in yeast. The yeast share con-
served domains of spliceosomal proteins (which are pre-
sent in yeast) with filamentous fungi, which are
conserved across other eukaryotic lineages.

Protein domain analyses of uncharacterized proteins
help in annotation, which lead to several benefits for pro-
tein annotators and also for understanding of protein
functionality. Understanding the domains of these pro-
teins help in detection of these proteins in newer fungal
genomes and in other organisms. Moreover, study of con-
served domains is a good approach for constructing struc-
tural analyses of these proteins. The complete vignette of
the spliceosomal mechanism in three dimension space is
possible only when we understand of the structural and
interacting components of spliceosomes. Recently, a
major breakthrough was achieved with the availability of
the crystal structure of PRP8, which provides the struc-
tural architectures of the spliceosome active site®. Simi-
larly, the crystal structure of human Ul snRNP also
provided mechanisms of 5'’-ss recognition®®. These are
major steps in assembling complete spliceosomal mecha-
nisms, and other computational studies may facilitate in
the future direction of research®. Similarly, our domain
analyses provides a first glimpse that fungal spliceosomal
proteins are by and large similar to human counterparts
and can play an instrumental role in assembling this
mechanism similar to their human homologs.

To the best of our knowledge, this is the first compre-
hensive and comparative report on spliceosomal proteins
and related factors using multiple fungal species. We
believe these results will be beneficial for further experi-
ments to analyse the splicing mechanism in fungi.
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