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This article proposes that the goals of math and science education ought to go beyond understand-
ing and applying a body of established knowledge, to aim at developing the capacity to construct 
knowledge. This would empower students to think like mathematicians, experimental scientists and 
theoretical scientists. These mental capacities and the concepts that underlie them serve as the 
trans-disciplinary foundations for research, allow individuals to function well in their professional, 
public and personal lives, and integrate knowledge across domains. It also functions as an effective 
means for the popularization of mathematics and the sciences. 
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The challenge 

QUESTIONS of serious concern to the science–maths edu-
cation world include the following: 
 
 How do we attract the young to specialize in, and 

choose careers in, science and math? 
 How do we develop among them the capacity to think 

like scientists and mathematicians? 
 How do we build a component of research into terti-

ary education? 
 
Responses to these questions from different quarters have 
been varied: 
 
 Build in a ‘hands-on’ or ‘experiential learning’ compo-

nent in science classrooms. 
 Set-up science clubs in schools and colleges. 
 Incorporate ‘project work’ into the curriculum. 
 Conduct science competitions. 
 Award prizes and scholarships to those who score 

high marks. 
 Conduct workshops for science and maths teachers. 
 Hold science camps. 
 Provide research training through internships.  
 

None of these solutions confronts the roots of the prob-
lem we face, namely poorly designed science and maths 
curricula. This includes not just what teachers and  
students do in the classroom, but the entirety of syllabi, 

textbooks and exam questions that shape and constrain 
what students end up learning. 

Inquiry-oriented education 

It is unrealistic to expect secondary and tertiary teachers 
to be researchers in all areas of study – in maths, science, 
philosophy, history and so on. Granting this, how do we 
design syllabi, textbooks, lesson plans and examination 
questions to empower teachers to pursue activities in 
their classrooms to help students develop the capacity to 
think like mathematicians, scientists, philosophers and 
historians? We asked ourselves this question more than 
30 years ago, and have been working on it ever since,  
designing appropriate syllabi, teaching–learning materials 
and assessment tasks, and testing them out in a range of 
field trials. 
 If an educational programme seeks to develop the  
capacity for mathematical inquiry, its syllabus must  
specify that by the end of the programme, students must 
have the following abilities: 
 
 Noticing patterns and formulating them as conjec-

tures. 
 Proving conjectures. 
 Critically evaluating the validity of proofs. 
 Coming up with definitions, formulating them pre-

cisely and evaluating them. 
 Creating abstractions and formulating the axioms  

governing them. 
 
A textbook aligned to such a syllabus needs to include 
graded tasks that develop the specifics of each of these 
strands of abilities, and examination questions need to 
probe into the attainment of these abilities. Likewise, the 
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syllabus of an educational programme that seeks to  
develop the capacity for scientific inquiry needs to specify 
that by the end of the programme, students must have the 
ability to 
 
 Notice regularities in observable phenomena and for-

mulate them as observational generalizations (includ-
ing correlational hypotheses, distinguishing among 
them those that are causal). 

 Design appropriate ways to test those hypotheses,  
using experimental or non-experimental observations, 
with or without instrumentation, within or outside  
laboratories, with or without quantitative (counting or 
numerical measurement) data. 

 Come up with theoretical explanations for the estab-
lished observational hypotheses, and critically evaluate 
them by deducing the predictions of the theory and 
testing them. 

 Choose between competing theoretical explanations, 
using the criteria of simplicity and generality. 

 
Similar syllabi need to be formulated for conceptual in-
quiry, ethical inquiry and historical inquiry, but we will 
not go into them here. Suffice it to say that cutting across 
these different modes of inquiry are tools like observing, 
reporting observations, noticing patterns, generalizing, 
classifying, building classificatory systems, defining, rea-
soning, justifying, debating and evaluating. 
 We use the term inquiry-oriented education (IOE) to 
refer to the strand of education that aims at inquiry abili-
ties of the kind outlined above. IOE would help students 
become producers and evaluators of knowledge, rather 
than mere consumers of knowledge. 
 IOE is not a replacement for knowledge-oriented edu-
cation (KOE) – the strand of education that aims to help 
students understand the concepts and propositions of 
knowledge. We believe that the two strands must com-
bine in a mutually enriching and meaningful fashion. For 
this, the knowledge component in mainstream syllabi has 
to be significantly reduced to make room for IOE. 
 We must note that most approaches to educational re-
form, as signalled by movements like inquiry-based 
learning, constructivism, hands-on learning, discovery 
learning, experiential learning, activity-based learning, 
peer learning, collaborative learning, problem-based 
learning, project-based learning and blended learning are 
knowledge-oriented: they view the goals of education as 
being restricted to ‘knowledge transfer’, at best to under-
standing the concepts of knowledge. Their innovativeness 
and value lie in the pedagogical means to achieve  
the traditional goals. What we are proposing is a radical 
rethinking of the goals of secondary and tertiary educa-
tion. 
 We must also add that the ideas for incorporating trans-
disciplinary inquiry in school syllabi, textbooks and  
assessments do not replace the current attempts at institu-

tions like IISc and IISERs to provide apprenticeship in 
discipline-specific research to Bachelor’s and Master’s 
students. Rather, they provide school students with the 
trans-disciplinary foundations needed for pursuing  
research (typically discipline-specific) at the university 
level. 

Syllabus specifications and learning tasks  
for IOE: examples 

When combining KOE and IOE, it is crucial to ensure 
that the activities to develop inquiry abilities do not  
require a level of knowledge and mental capacities be-
yond what can be expected of students of a given age 
group. Thus, it would be unrealistic to expect eighth 
grade students to come up with a proof of the Pythagoras 
theorem or the infinity of prime numbers. However, it is 
indeed feasible to introduce them to the idea of scientific 
and mathematical proofs through a lesson plan sequence 
like the following: 

Activity 1: Practice in constructing and evaluating  
definitions 

The teacher raises the question, ‘What is a straight line?’ 
Students work in groups. Each group comes up with a  
definition. Chances are that none of the definitions will 
work, except for: ‘The line from A to B is a straight line if 
and only if it is the shortest path from A to B’. 

Activity 2: Practice in noticing regularities and  
formulating them as conjectures/hypotheses 

The teacher asks students to draw random triangles and 
measure the length of each side. They then compare the 
length of each side with the sum of the lengths of the  
other two sides. The results are displayed in the form of a 
table on the blackboard. Students are invited to look for 
regularities in the data. Chances are that some of them 
will come up with: ‘In a triangle, no side can be longer 
than the sum of the other two sides’. 

Activity 3: Practice in looking for  
counterexamples 

Is the conjecture in activity 2 true? The first step is to 
look for counterexamples in the sample of triangles that 
we already have. Students check each instance and verify 
that no triangle in the sample violates the conjecture. But 
can there be other triangles outside the given sample that 
would be counterexamples? Students draw more triangles 
to test the conjecture further and discover that they can-
not find a counterexample. 
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Activity 4: Practice in the use of inductive  
sample-to-population reasoning in scientific proofs 

In activity 3, we were not able to find a counterexample 
to the conjecture/hypothesis from activity 2. The scien-
tific proof for the hypothesis would be along the follow-
ing lines: We examined a large random sample of 
triangles, and found no instance of a side that is longer 
than the sum of the other two sides. Until we find evi-
dence to the contrary, therefore, it is reasonable to con-
clude that the statement, ‘In a triangle, no side is longer 
than the sum of the other two sides,’ is true of the entire 
population of triangles. 

Activity 5: Practice in the use of deductive  
reasoning in mathematical proofs 

As far as science is concerned, the degree of certainty of 
the proof in activity 4 is sufficient. However, it does not 
establish beyond doubt that there are no triangles in 
which one of the sides is longer than the sum of the other 
two sides. Mathematical proofs need certainty beyond 
such doubt; hence the above proof does not satisfy the 
criterion of truth in mathematics. 
 At this point the teacher may ask the students to form 
groups to come up with a mathematical proof based on 
axioms and definitions. If necessary, they can be given 
the following hint: Is it possible to come up with a ma-
thematical proof based on the definitions of (a) polygons, 
(b) triangles and (c) straight lines? 
 Given this hint, students in most eighth-grade class-
rooms come up with a proof. The combination of the  
definitions of polygons and triangles requires that every 
side in a triangle be a straight line. In a triangle ABC, 
then, if AB is longer than AC + CB, AB is not the shortest 
path from A to B. Hence it is not a straight line; and ABC 
cannot be a triangle. Therefore AB cannot be longer than 
AC + CB in any triangle. 

Activity 6: Practice in generalizing 

The teacher can now ask students to extend the conjecture 
from triangles to quadrilaterals, pentagons, hexagons and 
octagons, to generalize it to polygons, and prove the  
generalized conjecture. This should be easy, following 
the strategy in activity 5. 
 Many educators and textbook writers seem to think that 
‘hands-on’ activities call for the use of one’s physical 
hands (such as measuring the period of a simple pendu-
lum), ignoring the far more important ‘minds-on’ activi-
ties. Notice that none of the activities above, except for 
activity 2 calls for the use of physical hands. They all 
crucially require that students engage with the tasks using 
their minds. 

 The minds-on experience is especially important in 
helping students develop thinking abilities required in 
experimental science. If we distinguish the design of  
experiments from the execution of experiments, it  
becomes obvious that a great deal of experimental sci-
ence can be learnt outside labs, without fancy instruments 
and other equipment. As an example, consider the follow-
ing: 

Activity 7: Practice in separating variables in  
experiment design 

Miko and her brother Jomo planted the seeds of some 
very hot chillies in their garden. When the plants grew 
and produced chillies, they found that the chillies were 
not hot. Miko said the chillies were not hot because the 
plants did not get enough sunlight. Jomo said it was be-
cause the plants did not get enough water. 
 Was Miko right and Jomo wrong? Or was Jomo right 
and Miko wrong? Were they both right? Or were they 
both wrong? The teacher asks the students to work in 
groups to design an experiment to examine these options. 

Activity 8: Practice in factoring out confounding  
variables 

Miko and Jomo’s grandmother thinks that drinking tulsi 
(holy basil) tea cures common colds. The teacher asks the 
students to work in groups to design a ‘double blind’  
experiment to test this hypothesis, with instructions to 
browse the internet to find out what ‘placebo effect’ and 
‘double blind’ mean. 
 We believe that the so-called ‘lab’ sessions in secondary 
and tertiary education that aim at expertise in the compe-
tent execution of experimental procedures (measurement, 
instrumental observation, sensory-motor skills such as in 
dissection, etc.) nurture neither knowledge nor inquiry. It 
is important that school education helps all children  
develop the capacity to think like an experimental scien-
tist. Our mainstream curriculum does not attempt to do 
this – it only provides the kind of training needed for lab 
technicians, not experimental scientists. For a science 
curriculum to be truly meaningful, it may be useful to 
shift the focus from implementing given procedures in 
lab classes to designing experiments in regular classes, 
and reflecting on the implications and consequences of 
their results. 
 Finally, although it is possible to help students develop 
the capacity for theoretical inquiry in science without any 
more content knowledge than they already have, they are 
hardly ever exposed to the art and craft of theory  
construction; this is true even of graduate students. Here 
is an example that we have successfully tried out with 
students ranging from grade 8 to Ph D: 
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Activity 9: Practice in the construction of scientific  
theories 

The teacher invites students’ attention to the following 
periodic correlations between time and temperature on 
any part of the earth. 
 
1. If we measure the temperature anywhere on earth 

once every hour for several days, and plot it on a 
graph, we find that the temperature starts going up in 
the morning, and coming down in the afternoon, form-
ing a daily cycle. 

2. If we plot the average temperature of a day anywhere 
on earth for a few years, we find that the temperature 
goes up over a few months, and then comes down, 
forming a yearly cycle.  

 
 Students form groups to come up with an explanation 
for these two correlations, in terms of both the geocentric 
and heliocentric theories of the solar system.  
 They typically come up with two classes of explanation 
for the correlations. One is the distance theory, which 
holds that it is hotter when the sun’s rays travel a smaller 
distance. At noon, for instance, the sun’s rays travel less 
distance through the atmosphere than in the morning or in 
the afternoon. This explains correlation 1. Likewise, if 
the sun is at the centre of an elliptical orbit (in the helio-
centric theory), it would be winter when the earth is far 
away and summer when it is closer. The other explana-
tion relies on the distribution of energy across a larger or 
smaller area, depending on the angle of incidence of 
light. 
 
Getting students to develop these theories with rigour and 
precision such that they can narrow down the set of ad-
missible theories to a small subset is a fairly complex 
task. However, it is feasible in secondary or tertiary 
classrooms, and certainly desirable if nurturing future 
scientists is one of the goals of science education. It does 
not matter if they do not zero in on the ‘correct’ theory of 
seasons (tilt of the earth’s rotation): what matters is the 
process of theory construction and evaluation. 
 Each of the activities illustrated above has a well-
defined learning outcome that constitutes an important 
strand of inquiry. Going through a variety of such care-
fully constructed activities from relatively simple to 
somewhat challenging ones will give students adequate 
preparation not only to undertake research in science and 
mathematics, but also to extend the essentials of mathe-
matical and scientific inquiries to domains beyond these 
disciplinary boundaries. 
 To supplement inquiry activities of this kind, we also 
need activities that nurture critical thinking and critical 
reading. And to supplement these in turn, it is important 
that we help students develop a critical understanding of 
some of the core elements of ‘knowledge’ that constitutes 

the modern worldview. By ‘critical understanding’, we 
mean an understanding of the relevant evidence and  
arguments that support (or refute) the conclusions taken 
as ‘knowledge’, allowing students to address questions 
such as the following: 
 

 Our experience tells us that the earth is stationary. 
Why should we accept the conclusion that the earth 
revolves around the sun and rotates on an axis tilted to 
the plane of revolution? 
 Both ancient Greeks and ancient Indians believed 
that air is an element; why should we reject this posi-
tion, and accept the conclusion that air is a mixture? 
 Aristotle believed that matter can in principle be  
divided infinitely, without the process ever ending. 
Democritus, in contrast, believed that the process of 
dividing matter comes to an end when we get to indi-
visible particles of matter that he called ‘atomos’. 
Modern science rejects Aristotle’s and accepts De-
mocritus’ position. Why should we do the same? 
 Darwin claimed that all existing and extinct life-
forms on earth evolved from unicellular ancestor spe-
cies. What is the evidence for us to accept this claim? 

 

 The questions we are raising above are analogous to 
the following questions in mathematics: 

 Why should we believe that the sum of angles in a 
triangle is two right angles? 
 Why should we believe that the sum of n consecu-
tive integers is divisible by n if and only if n is an odd 
number? 

 
 In mathematics education, the response to such ques-
tions comes in the form of mathematical proofs, often 
provided in math textbooks. Science textbooks do not 
have a corresponding tradition: they do not provide 
proofs. In pointing to the need for critical understanding, 
we are essentially saying that we should minimally ex-
tend this tradition of maths education to science educa-
tion as well. 

Raising the quality of science and maths  
education through IOE 

Inspired by these ideas, a number of like-minded educa-
tors have come together over the last few years to form a 
collective called ThinQ (www.schoolofthinq.com), dedi-
cated to the cause of helping secondary and tertiary stu-
dents develop the capacities of mathematical, scientific, 
conceptual and ethical inquiry. A comprehensive docu-
mentation of IOE, along the lines illustrated above, with 
extensive samples of syllabi, video and print teaching–
learning materials and assessment tasks, is available as 
open source at the ThinQ website. 
 ThinQ also conducts an on-line course called Inquiry 
and Integration in Education (IIE), for anyone who  
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resonates to the IOE quest, to help them develop the  
capacity for inquiry across disciplinary boundaries, and 
the capacity to help students develop inquiry abilities 
(http://www.schoolofthinq.com/statics/iie2017). A small 
subset of participants from the on-line course is invited to 
an advanced and intensive nine-day face-to-face work-
shop in IIE. These participants go on to pursue IOE as 
advocates, parents, teachers, teacher educators, materials 
producers and educational administrators. As a result of 
these initiatives, IOE has gradually been spreading to 
secondary and tertiary educational institutions. 
 To return to the three questions we raised at the begin-
ning of this article, IOE helps develop: 
 
 The trans-disciplinary foundations for research in a 

wide range of domains. 
 The mental capabilities that allow individuals to func-

tion well in their professional, public and personal 
lives. 

 The integration of knowledge across domains, other-
wise fragmented as specialized fields, disciplines and 
discipline groups. 

 
It also functions as an effective means for the populariza-
tion of mathematics, physical sciences, biological sciences, 
human sciences, philosophy and so on. It has been our 
experience, at secondary school, high school, college and 
university levels, that once they are exposed to the  
excitement of inquiry, students who otherwise hate a  
particular subject, whether maths, biology or history,  
become excited, realizing that even in those very sub-
jects, they can move from the passenger’s to the driver’s 
seat. 
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