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Earthworms commonly occur within the soil. They al-
ter physico-chemical and biological regimes of the soil 
through their activities, such as burrowing, casting, 
feeding and propagating, and therefore are known as 
‘ecosystem engineers’. Through their activities, they 
provide a number of ecosystem services which are eco-
logically and socio-economically important. This  
article reviews the role of earthworms in improving 
soil structural and functional properties, which serves 
as key determinants of soil ecosystem services and eco-
nomic benefits for the farmers. A methodology of  
economic evaluation of the agro-ecosystem services 
provided by earthworms has been demonstrated.  
Further, the information gaps and future research 
have been discussed for ensuring sustainable agro-
ecosystems management. 
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ECOSYSTEM services include an array of direct and indi-
rect benefits provided by natural ecosystems for the well-
being of human societies and represent part of the eco-
nomic value of the planet1. Soil-forming processes  
account for more than one third of the average value of 
the total ecosystem services (33 Trillion US$)2. In gen-
eral, biodiversity is the basis of these ecosystem services 
at every aspect. Earthworms play an important role in the 
soil-forming process and therefore considered as ‘key-
stone species’3 and described as ‘ecosystem engineers’4, a 
vastly popular term proposed only in 1994 (refs 5, 6). 
They are also called ‘ecosystem services managers’ as 
they act as a potential partner of human beings7. 
 Earthworms have been categorized into three principal 
ecological groups depending upon the ecosystem processes 
and the services they provide (Figure 1). For example, 
most common epigeic species produce soil roughness and 
macro-pores by inhabiting litter and producing casts at 
the soil surface. Anecic species extend down the soil 
layer as they live in vertical burrows. The third category 
is the endogeic species, which make horizontal or ran-
domly oriented burrows through all the layers of the  
upper soil and feed on decayed organic matter8. 

 Earthworms act as a catalyst in enhancing the crop 
yield (Table 1), but their effect depends on the amount of 
crop residue, earthworm density and rate of fertilization9. 
However, they always provide materials and energy out-
puts which have monetary values. They also carry out a 
range of functions by supporting life through regulating 
bio-geochemical cycles and other biosphere processes 
such as decomposition, climate, pollution remediation 
and biodiversity interaction. Moreover, earthworm’s life 
processes lead to several other services which are neces-
sary for the functioning and self-sustainability of agro-
ecosystems. These services include primary production, 
nutrient cycling, soil structure development and soil  
hydraulic functions, to name a few. Earthworm is also an 
important component of education to students to demon-
strate the decomposition and recycling of organic matter. 
The services of earthworms are still not recognized and 
there is a lack of awareness of its ecological and eco-
nomic benefits. 
 The objectives of this review are (i) to discuss the role 
of earthworms in transforming soils and (ii) to evaluate 
the potential role of earthworms in the agro-ecosystem 
services. 

Earthworm services to the soil and  
agro-ecosystem 

Soil structural development 

Development of soil structure from micro- to macro-scale 
is a function of interacting physical forces of soil water 
content, actions of large biota like plant roots and earth-
worms, presence of organic matter in the soil and  
tillage10. The most prominent effect of the earthworm is 
on the reorganization of soil structure while moving 
through the soil, feeding on the soil11 and release of  
material due to their low assimilation efficiency. 
 Earthworms can either make the soil compact or loose, 
depending on the species and its interaction with the soil. 
Anecic and endogeic species are responsible for a majo-
rity of physical improvements in soil structure through 
cast production in vertical and horizontal burrows. Cast 
production modifies soil bulk density through incorpora-
tion of organic matter into the soil. For example, an
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Figure 1. Ecosystem service cascade linking biophysical measurements of natural capital with ultimate benefits to society64. 
 
 
endogeic earthworm, Reginaldia omodeoi was reported to 
increase soil bulk density from 1.24 to 1.31 g cm–3 and 
from 1.37 to 1.48 g cm–3 in two different studies12. A sig-
nificant increase was also observed in bulk density from 
1.12 to 1.23 g cm–3. A resulting decrease in porosity from 
58% to 53% in the presence of a tropical endogeic earth-
worm, Pontoscolex corethrurus was also observed13. In a 
long-term field experiment under tropical condition,  
interaction between soil compacting (R. omodeoi) and  
de-compacting (small Eudrilidae family) species helped 
in maintaining the soil structure14. Earthworms also affect 
size distribution of soil aggregates. De-compacting 
earthworms (e.g. Millsonia anomala) destroyed the  
macro-aggregates formed by the compacting ones, 
whereas compacting earthworms acted similarly with the 
casts of the de-compacting earthworms15. This indicates 
that there exists a wide variability in the action of earth-
worms in regulating soil structure dynamics. It was re-
ported that compacting earthworms (e.g. R. omodeoi), 
inoculated under yam and maize culture increased the 
relative proportion of aggregates >2 mm from 30% to 
54% and 25% to 42% respectively16,17. Earthworms are 
estimated to produce casts at the rate of about 40–
100 tonnes ha–1 year–1 and thus, immensely contribute to 
the formation of stable soil aggregates18. They could con-
vert 18–42% of soil material into macro-aggregates only 
within two months19. 
 It is obvious that earthworms improve soil porosity as 
well. In a study, fine (<0.4 mm) fraction of soil aggre-
gates was predominant in a treatment with no earthworm 
population, compared to the treatments where earth-
worms were present15. It was also observed that endogeic 
earthworms modified soil porosity to control the water 
flow in the soil, and the effect depended on the equilib-
rium between cast production and soil degradation20. 

Soil water retention 

The dwelling activity of earthworms modifies soil aggre-
gates and increases stable macro-pores21 which improves 
water infiltration to the soil. Interestingly, each ecologi-
cally distinct group of earthworms has different impacts 
on soil water flow due to the dissimilar burrowing acti-
vity of the groups22. A study reported enhanced drying of 
the topsoil by anecic species Lumbricus terrestris and  
endogeic species Aporrectodea caliginosa, while the 
presence of Lumbricus rubellus tended to increase the 
soil water status23. In comparison to other species, A. ca-
liginosa helps in enhancing the soil infiltration and faster 
water movement to the subsoil layers due to its high 
dwelling activity in the soil. 
 Earthworms interact with plant species composition of 
agro-ecosystem. A certain plant functional group along 
with earthworm biomass could significantly alter the  
spatial and temporal variations in soil hydraulic proper-
ties while soil texture had no impact on such properties24. 

Soil carbon sequestration 

Earthworms induce the primary production of ecosystems 
by enhancing the nutrient release in the soil, thereby con-
tributing to climate change regulation activities25. This 
action could be due to enrichment of organic matter,  
nutrients and water in the gut of the earthworm species, 
which encourage microbial activity26. These microbial 
byproducts facilitate in binding the soil particles into sta-
ble aggregates27. Thus, earthworms help in maintaining a 
higher C content through the formation of stable aggre-
gate and stabilizing C by preventing its otherwise rapid 
degradation and loss as CO2 and/or CH4 (ref 28). An
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Table 1. Role of earthworms in modifying soil physical, chemical and biological properties 

   Change in the property  
Properties  Parameters Earthworm species involved (% over control) 
 

Physical Aggregates Eudrillus eugeniae78 –19.50 (Micro),  
    –76.97 (Macro) 
  Millsonia anomala79 71.54 
 Bulk density M. anomala79 8.029 
  Aporrectodea longa, Aporrectodea tuberculata and Bimastos parvus, 0.71 
    Phoenicodrilus taste80  
 
 Hydraulic conductivity Aporrectodea caliginosa81 8.06 
  Lumbricus rubellus81 5.44 
  Octolasion cyaneum80 28.54 
 
 Water holding capacity Megascolex megascolex , Eudrilus eugeniae, Eisenia fetida77 61 
 
Chemical Soil organic carbon Pheretima alaxandri38 2.66 
  E. eugeniae78 27.22 
  Pontoscolex corethrurus82 21 
  Exotic species (A. tuberculata, Lumbricus terrestris)83 34.81 
  A. longa, A. tuberculata and B. parvus, P. taste80 64.14 
  M. anomala79 –1.36 
 
 pH Pheretima alaxandri38 10.61 
  NA84 27.08 
  A. caliginosa85 5.6 
  A. longa, A. tuberculata and Bimastos parvus, Phoenicodrilus taste80 –4.54 
 
 Nitrogen content E. eugeniae78 50 
  P. corethrurus82 2.04 
  Exotic species (A. tuberculata, L. terrestris)3 48.52 
  A. caliginosa85 1.9 
  A. longa, A. tuberculata and Bimastos parvus, P. taste80 47.11 
  M. anomala79 –1.51 
  Metaphire guillelmi86 –28.69 
 
 Phosphorus content P. alaxandri38 26.66 
  E.eugeniae78 72.47 
  A. longa, A. tuberculata and B. parvus, P. taste80 20.12 
  M. guillelmi82 –27.11 
 
 Potassium content P. alaxandri38 80.66 
  E. eugeniae78 64.07 
 
 Sodium content A. longa, A. tuberculata and B. parvus, P. taste80 3.64 
 
Biological Microfauna NA Bacteria87 26.25 
   Fungi87 17.39 
   Actinomycetes87 15 
 
  A. caliginosa Protozoa88 –18.24 
   Rotifers88 –90 
   Nematodes88 –83.80 
 
  P. corethrurus Nematodes89 –20.60 
  NA Azotobacter90 93.16 
 Soil organic matter NA6  26.22 
 Enzymatic activities NA Cellulase87 8.73 
   Amylase87 57.82 
   Invertase87 79.87 
   Urease87 18.67 
   Protease8 20 
  A. caliginosa Cellulase88 –17.2 
   Dehydrogenase88 79.26 
   Protease88 98.27 
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Table 2. Role of earthworms in CO2 and N2O emission from the soil 

 Emission (mg kg–1) 
 

Continents Country CO2  N2O  
 

Asia China27 1079.8 0.4227 
America Canada65 340.0 0.105 
 Canada66 2568.0 0.818 
 Mexico67 11.3 2.600 
 

Europe Netherlands68 881.0 0.056–0.789 
 Netherlands69 473.9-593.6 1.397 
 Netherlands70 302.0 0.973 
 

Africa Antsirabe, Madagascar71 48.0 3.800 
Oceania Australia72 1510.6 1.055 

 
 
increase in soil organic C from 16.1 to 17.9 g C kg–1 and 
from 12.4 to 14.7 g C kg–1 after the introduction of Lum-
bricus terrestris to a chisel-tilled soil under maize-soya 
bean rotation has been reported29. 
 Increase in C emission from fields with a good earth-
worm population was also widely reported (Table 2). A 
meta-analysis indicated that although earthworms  
sequester C in macro-aggregates, it also increases CO2 
emissions by 37% through aerobic respiration30. A  
decline in organic matter from an arable land with high 
earthworm population was recorded after 15 years31. It 
appears that earthworms can stabilize the soil organic 
matter when organic residues are regularly added to the 
soil32. Addition of organic matter is recommended rather 
than the inoculation of earthworms into the soil alone, to 
improve the soil fertility in the agro-ecosystem33. A  
majority of Indian soils are low in organic C status, and 
therefore it is likely that earthworm services can be real-
ized only when organic inputs were added to the soil to 
encourage soil C sequestration. 

Nutrient cycling in soil 

A number of studies highlighted the role of earthworms 
in nitrogen flow in the agro-ecosystem by increasing the 
nitrous oxide (N2O) emissions (Table 2). The flux of N by 
earthworms was estimated at 63 kg ha–1 year–l in no-
tillage system34, and 10 and 41 kg ha–1 year–1 in monocul-
ture and organically fertilized agro-ecosystems35,36. 
 Earthworms exhibit profound influence on soil micro-
bial community and increase nitrogen mineralization in 
soil37. However, earthworm effects on N-cycling is de-
termined by cropping system and fertilizer types, and by 
the predominant species and species interactions in the 
soil38. Therefore the earthworm species and substrate pre-
sent in the soil largely determine the N-immobilization 
and/or N-mineralization39. Hence, agroecosystem man-
agement becomes extremely important40. Mineralization 
of organic substances is assisted through ingestion, frag-
mentation and transportation of the partially decomposed 

plant residues by earthworms which increase the avail-
ability of nutrients in the soil41. Plant growth is improved 
through increase in nutrient composition in plant tis-
sues42, and through higher nutrient release in the soil and 
uptake43. Microbial activity is increased in the presence 
of earthworms, leading to nitrogen-mineralization and 
immobilization through direct or indirect benefits by 
earthworms44. 
 Earthworms were also reported to increase the avail-
ability of phosphorus by facilitating changes in the bio-
geochemical status of P in burrow-linings45. In a pot 
experiment with earthworms, higher levels of plant avail-
able P resulted in increased plant growth from 15.7 to 
16.8 g dry biomass per pot46. 

Soil biodiversity interactions 

Earthworms are an integral part of the soil ecosystem, 
and therefore, exhibit intimate functional interactions 
with microbes. The effect is manifested through three  
basic mechanisms: comminuting, burrowing and casting, 
and grazing and dispersal, which change the soil’s phys-
ico-chemical and biological regimes. Earthworms possi-
bly condition the substrate which promotes microbial 
activities. 
 Earthworms induce the nematode population in the soil 
and nematode tropic structure47 which help in assimilat-
ing amino acids with other compounds48. In contrast, 
Lampito mauritii decreased the numbers of nematodes49. 
Micro-arthropod population in soils e.g. Collembola in 
soils was increased in the presence of earthworms50.  
Micro-arthropods get attracted by earthworms through 
their action on surrounding soil, where water availability, 
aeration and pores size are improved51. 

Pollution remediation 

Earthworms are reported to bio-accumulate high concen-
trations of heavy metals like Cd, Hg, Pb, Cu, Mn, Ca, Fe



REVIEW ARTICLE 
 

CURRENT SCIENCE, VOL. 113, NO. 6, 25 SEPTEMBER 2017 1068 

Table 3. Heavy metal concentration (mg kg-1) in different species of earthworms 

Species Cd Cu Pb Zn 
 

Pheretimaposthuma73 0.0498 6.092 0.0173 1.92 
Pheretima californica74 9.18 74.68 670.55 657.75 
Aporrectodea caliginosa75 11.6–102.9 17.9–35.9 1.9–182.8 556–3381 
Lumbricus rubellus75 7.7–26.3 16.0–37.6 0.5–37.9 667.9–2645 
Aporrectodea tuberculata76 – 361 – 631 
Eisenia foetida76 – 249  439 
Lumbricus terrestris38,77 – 39.0 31.0 132 
 – 62.0 10110 1550 

 
and Zn in their tissues52 by ingesting them with soil. This 
converts ionic state of these metals and make them avail-
able for plants after earthworm excretion (Table 3). In a 
study, higher amounts of heavy metals were found in 
earthworms collected from the roadside and mining 
sites53. Earthworms accumulate higher amounts of Zn and 
Cd54 and reduce the concentrations of Cr, Cu, Zn and Pb 
to the limits set by USEPA in 60 days using vermicom-
post sludge (biosolids)55. Thus earthworms may be re-
garded as bio-indicators for evaluation of soil health. 

Production enhancement 

Earthworm’s role in plant growth has been widely dem-
onstrated43, possibly due to increased nutrient availability 
in soils. A meta-analysis revealed the role of earthworms 
in increasing crop yield by 25% and above ground bio-
mass by 23% (ref. 9). Leaf weight, cob biomass and the 
number of cobs of maize crop also increased by 40%, 
152% and 130% respectively, in the presence of Millsonia 
anomala; increased leaf production of rice was recorded 
by 14% in the presence of Chuniodrilu zielae. Associa-
tion of M. anomala and C. zielae had better impact than 
their individual effect56. 

Considerations for economic quantification 

Diversity, abundance and biomass are the major parame-
ters to be considered for quantifying the role of earth-
worms in ecosystem services. We have so far discussed 
the ecosystem services by earthworms. Here we develop 
a methodology for quantification and valuation of these 
services in monetary terms. The methodology covers  
following five major steps. 

Identifying agroecosystem services 

Although direct benefits of earthworms are disguised, 
their contribution to the ecological modification of agro-
ecosystem and to the economy of farmers is well-
recognized. Identification of major benefits is the prime 
step for quantification and valuation of ecosystem services, 
considering the socio-economic and ecological measures 
of an individual service. 

Developing markets 

The next step is to develop the market for identified ser-
vices. In general, it is crucial to ensure the proximity of 
the service in terms of land management approach, farm-
ers’ intervention (fertilizer and irrigation inputs), human 
activity, demography and transfer to market cost for gen-
erating a service market57. Six steps have been identified 
for creating ecosystem services market: (1) generation of 
demand; (2) definition of unit and supply; (3) definition 
and establishment of payment mechanism; (4) establish-
ment of supporting institutions; (5) feedback and environ-
ment58 and (6) stability and conditionality of programme 
implementation59. 

Assigning monetary values 

Stakeholders may assign values to the ecosystem services 
based on the markets and the discharge of ecological and 
socioeconomic services. Many studies have given values 
to a particular service by measuring the earthworm’s 
population in subsoil or topsoil. Earthworm population 
was used to estimate the quantity of fertile soil annually60 
depending on biomass and soil turnover estimates61,62  
respectively. Besides, at an average earthworm biomass 
of 75 g m–1, grassland productivity was approximated to 
US$ 152 million in 2.25 m ha of land63. 

Consideration of external drivers 

Once monetary values are assigned, the external drivers 
(climate change, land-use pattern, etc.) affecting the soil 
processes may be considered for cost-benefit analysis. 
These factors influence the soil processes leading to  
lesser natural capital stocks. 

Trade-off analysis 

This is a process of quantifying the relationship between 
key indicators associated with changes in agro-ecosystems 
and relevant policies. A meta-analysis indicated that 
earthworms increase CO2 emissions rather than its  
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sequesteration30. We must take note of these issues which 
affect policy-making, and influence the stakeholders or 
decision makers. A trade-off analysis to quantify the in-
dicator’s effect on agro-ecosystem and in policy-making 
is therefore and must be considered. 

Conclusions 

We need larger and more robust data on soil biodiversity 
to understand the ecosystem services by soil fauna, i.e. 
microorganisms and micro-arthropods. The earthworm is 
an essential component in sustainable agricultural sys-
tems, although major gaps remain in understanding their 
role in providing ecosystem services. Therefore, there is a 
need to identify all the ecosystem services provided by 
each ecological group of earthworms along with other 
soil biota. The existing and new knowledge on earth-
worms and related ecosystem services need to be inte-
grated. Additionally, the farm-level management practices 
should be enhanced to promote ecosystem services64. 
Cost-benefit or trade-off analysis must be accounted. It is 
also necessary to update the knowledge of monetary val-
ues generated by earthworm population at local or re-
gional scale for economic evaluation of ecosystem  
services. 
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