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the global average. This is reflected in the X-scores and 
F-scores (Tables 4 and 5). The NUS + NTU cluster is 
four times more effective than the IISc + 7IITs cluster at 
the level of the second-order indicators10,11. 
 Finally, we can give a broad estimate for the balance 
(evenness or consistency) as measured by  = F/X in the 
two clusters arranged into the boarder REF categories, as 
shown in Table 6. We see that the NUS + NTU cluster 
has a slight edge over the IISc + 7IITs cluster. 
 In conclusion, we decompose the research performance 
of the IISc + 7IITs and NUS + NTU clusters into three 
components – size, excellence and balance or evenness. 
Data are retrieved from the excellence mapping web  
application. The NUS + NTU cluster outperforms the 
IISc + 7IITs cluster on all three counts. The research base 
in the former is larger, it produces work which is uni-
formly of higher quality and is structurally more diverse. 
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In this study, we revisit the popular method of measur-
ing the nonlinear susceptibility of a material through 
Z-scan technique, introduced in 1990 by Sheik-Bahae 
and co-workers through a simple ray optics defined by 
the ABCD matrix formulation. The work therefore 
looks at the Z-scan measurement curves analysed 
through ray propagation in the medium and analysed 
through an aperture. The transmittance of a sample in 
the Z-scan technique is measured through a finite  
aperture in the far field, as the sample is scanned 
along the propagation direction (Z) of a focussed Gaus-
sian beam. The sign and magnitude of nonlinear refrac-
tive index are easily deduced from the transmittance 
curve (Z-scan) using the theoretical model based on 
ABCD matrix formalism. 
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ABCD matrix formalism is an efficient and widely used 
tool to describe the propagation of a beam through arbi-
trary optical systems. ABCD matrices for free propaga-
tion and for many optical components (lens, mirror, etc.) 
are known1,2 and extensively used in commercial ray trac-
ing softwares like ZEMAX, Code-V, etc. for design and 
analysis of complex optical systems. These matrices are 
also useful to determine the characteristics of paraxial op-
tical systems, such as their effective focal length and the 
position of their six cardinal points. They are used to 
characterize the width and the wavefront curvature of an 
optical gaussian beam after its propagation through dif-
ferent optical components. The present work attempts to 
use the ABCD matrix formulation to describe the Z-scan 
technique to determine the nonlinear response of a mate-
rial. There are several methods to measure nonlinear re-
fraction including nonlinear interferometry3,4, degenerate 
four-wave mixing5, degenerate three-wave mixing6, el-
lipse rotation7, and beam distortion measurements8 and Z-
scan9,10. The first three methods are potentially sensitive 
techniques, but these require relatively complex experi-
mental apparatus, whereas Z-scan is a simple technique to 
study nonlinear refraction and nonlinear absorption. It has 
been shown that nonlinear refraction and its sign can be 
obtained from a simple linear relationship between the 
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observed transmittance versus sample position with  
respect to the focal point on the propagation axis (Z)9. 
 The basics of nonlinear optics necessary for Z-scan are 
presented and the theoretical analysis of Z-scan meas-
urements using ABCD matrix assuming an intensity-
dependent refractive index component for analysing the 
transmitted beam parameters is presented. Experiments 
for measuring the third-order nonlinearity via Z-scan 
were performed on CS2 sample, comparing this data with 
theoretical simulation by using ABCD matrix formalism. 
The nonlinear refractive index (n2) was calculated which 
agrees well with the literature value. 
 Here, we demonstrate a simple single beam method for 
measuring sign and magnitude of nonlinear refractive in-
dex (n2) using ABCD matrix formalism for analysing the 
beam properties. Experiments were carried out with a 
femtosecond laser and the results show that three-photon 
absorption contributes to the measurements. 
 The dipole moments per unit volume, or polarization 

( ),P t  of a material system depends on the strength of the 
applied electric field, ( ).E t  In the case of linear optics, 
the induced polarization is proportional to electric field, i.e. 
 
 (1)( ) ( ),P t E t   (1) 
 
where   (1) is the linear susceptibility second rank tensor. 
 Under the application of intense electric fields via laser 
beams, the polarization, representing the electronic re-
sponse of the medium can be treated as a power series in 
the electric field strength ( )E t  given as 
 
 (1) (2) 2 (3) 3( ) ( ) ( ) ( ) ... .P t E t E t E t          (2) 
 
The quantities  (2) and  (3) are second-order and third-
order nonlinear optical susceptibilities respectively which 
are third and fourth rank tensors11. For centro-symmetric 
system, i.e. the media which show inversion symmetry, 
all the even order terms like  (2),  (4),  (6)… become 
zero. For all centro-symmetric media,  (3) is the lowest 
surviving nonlinear term. The present experiments were 
performed on centro-symmetric media, to measure the 
real parts of the complex term  (3) through the Z-scan 
technique by applying the ABCD matrix formalism. The  
refractive index of the nonlinear medium is expressed in 
terms of nonlinear index n2 (cm2/W)11 through 
 
 n = n0 + n2I, (3) 
 
where n0 is the linear refractive index, and 0( /I cn  

28 )| | ,E   is the irradiance of the laser beam within the 
sample and n2 is related to the nonlinear susceptibility 
through 
 

 
2

(3)
2 2

0

12 .n
cn
   (4) 

As per eq. (3), a spatially Gaussian light beam passing 
through a nonlinear medium will experience a varying re-
fractive index across its cross-section, due to the radial 
intensity variation from beam centre to the periphery. 
Depending on the positive or negative sign of the nonlin-
ear susceptibility ( (3)) or nonlinear refractive index (n2), 
one observes self-focussing (positive n2) and self-
defocussing (negative n2) of the incident light. As the 
third-order nonlinear susceptibility is generally complex 
in nature, its real part contributes to refractive index 
change and the imaginary part contributes to the absorp-
tion co-efficient11. 
 The popular Z-scan technique is experimentally a sim-
ple and sensitive method for measuring both nonlinear re-
fraction and nonlinear absorption, which was introduced 
by Sheik-Bahae et al.9 in 1990. The following explana-
tion gives a qualitative idea on how such a trace (Z-scan) 
is related to nonlinear refraction of the sample. Assume, 
for instance, a sample with negative nonlinear refractive 
index and its thickness is smaller than the Rayleigh 
length of the focussed beam (a thin medium). This can be 
regarded as a thin lens (negative or concave lens) of vari-
able focal length at different positions of the sample on 
the Z-axis. Starting the scan from a distance far away 
from the focus (negative Z), where the beam irradiance is 
low and one expects negligible nonlinear refraction (Fig-
ure 1), the transmittance (D2/D1), the ratio of signal  
detected by detector D2 to the signal detected by refer-
ence detector (D1) remains relatively constant. 
 As the sample is brought closer to the focus, the beam 
irradiance increases, leading to self-lensing in the sample 
due to its nonlinearity. A negative self-lensing prior to 
focus will try to collimate the beam, causing a beam nar-
rowing near the aperture resulting in an increase in the 
measured transmittance. As the scan in Z continues and 
the sample passes the focal plane to the right (positive Z), 
the same negative lensing effect increases the beam  
divergence, leading to beam broadening at the aperture, 
and thus a decrease in transmittance through the aperture. 
It is also easy to realize that there will be no change at 
Z = 0, as it is analogous to placing a thin lens at the fo-
cus, resulting in a minimal change to the far field pattern 
of the beam. The Z-scan is completed as the sample is 
moved far away from focus (positive Z) such that the 
transmittance becomes linear, which happens when the 
irradiance is again low9. 
 Let us derive the equation for the beam waist at the de-
tector as a function of the sample position (Z), using the 
ABCD matrices for convex lens, free space and the sam-
ple. Consider the geometry given in Figure 1. It is easy to 
formulate ABCD matrix formalism for analysing the Z-
scan data. From Figure 2, w0 is the minimum spot size, z0 
the Rayleigh range, r1 the input beam waist, f1 the focal 
length of the convex lens, f2 the induced focal length for 
the sample due to incident Gaussian beam, r2 the beam 
waist at the aperture, x the distance between lens and the 
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sample and y is the distance between the sample and ap-
erture. D = (x + y) is the distance between lens and  
aperture, and wz is the beam waist at different positions 
(Z) given by12 
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When the Gaussian beam propagates through the sample, 
the medium acts as a lens, whose focal length depends on 
the intensity of beam at that point. By scanning the  
sample from –Z to +Z, the change in beam waist at aper-
ture (r2) is observed. 
 First we relate beam waist (r2) as a function of Z using 
ABCD matrices for all the optical components and then 
do a numerical integration across the beam to arrive at the 
nonlinear transmittance (T) as a function of the sample 
position (Z). 
 From Figure 2, the ABCD matrices for convex lens, 
free space between lens and sample, sample and free 
space between sample and aperture are respectively given 
by 
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The resultant ABCD matrix is therefore a multiplication 
of these four matrices, from which we arrive at the beam 
waist at the aperture (r2) as given by 
 

 2 1 2 1 1 1 1 2 1 1 2
1 2

1 [ ].r r f y xyr r f y xr f r f f
f f

       (6) 

 
The nonlinear optical element is the sample, whose focal 
length f2 is a function of the sample position (Z)13 because 
of the varying intensity produced by the first lens. 
 
 

 
 

Figure 1. Simple Z-scan apparatus for measuring the nonlinear 
transmittance as a function of sample position z. 

 We estimate the focal length f2 of the sample using the 
lens maker’s formula. Figure 3 shows the calculation of 
light-induced radius of curvature for the sample (R). 
From Figure 3, R2 + b2 – 2Rh + h2 + R2 (since h <<b),  
 

 
2

,
2
bR

h
  (7) 

 
where 
 
 2h = tn2I00, (8) 
 
where t = 1 mm is the thickness of the sample used in the 
experiment, and 2h is the apparent thickness variation of 
the medium (Figure 3) at the centre of the Gaussian pro-
file by assuming that the refractive index does not vary, 
but only the thickness varies. This enables us to think of 
the medium as a convex lens with an increase in thick-
ness of 2h at the centre of the Gaussian beam for a posi-
tive nonlinear medium and a reduction in the thickness by 
2h for a negative nonlinear medium. 
 As the area covered by the beam in the sample leads to 
the formation of intensity dependent lens, b is equal to 
wz. The intensity along z is 
 

 00 2 ,
z

PI
W

  (9) 

 
where P is equal to the total power incident on the sam-
ple. It is assumed that the absorbance in the sample is  
 

 
 

Figure 2. Schematic diagram for gaussian beam waist using ABCD 
matrix. 
 
 

 
 

Figure 3. Calculation of the radius of curvature of the sample. 
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small. Equation (9) shows that the intensity (I00) is a 
function of beam waist along z. So the intensity and area 
of the beam changes, while the total power remains con-
stant12. From the well-known formula for a lens, we have 
 

 
2 1 2

1 1 1( 1) ,n
f R R

 
   

 
 (10) 

 
where n is the refractive index of the nonlinear medium 
which is given by n = n0 + n2I and R1, R2 are the radii of 
curvature of the two surfaces of the induced lens. If we 
assume negligible absorption, R1  –R2 = R. From the eq. 
(10), we obtain 
 

 2 .
2( 1)

Rf
n




 (11) 

 
Substituting f2, in eq. (6), we have r2 as a function of z. 
The variation of r2 with sample position Z is shown in 
Figure 4 a and b for negative and positive nonlinear re-
fractive indices respectively. 
 Figure 4 a illustrates the case of n2 < 0, where the sam-
ple is scanned from –Z, the beam irradiance increases 
slowly and the sample acts as a concave lens making the 
equivalent focal point shift towards +Z direction. As a re-
sult, the beam waist decreases at the aperture, so that we 
have a valley first. When the sample is in +Z position, the 
beam again diverges at the aperture, so that we have a peak 
for z > 0. For positive nonlinearity (n2 > 0), an exactly 
opposite process happens, which is shown in Figure 4 b. 
 
 

 
 

Figure 4. Graph represents variation of beam waist at the aperture 
with the sample position (z) for (a) n2 < 0 and (b) n2 > 0. The results 
obtained using ABCD matrix formalism. 

 Once we have r2 as a function of z, by numerical inte-
gration of the Gaussian function over aperture area, we 
can obtain power through the aperture. Also by integrat-
ing the same Gaussian function over the total area (the 
area covered by beam at aperture), we obtain the total 
power. Division of the power through aperture (Pa) with 
the total transmittance power (Pt) gives the nonlinear 
transmittance (T). We now discuss the numerical integra-
tion of Gaussian function over the aperture. The Gaussian 
function is 
 

 
2

2( / )
0e ,r rF F   (12) 

 
where F0 is the amplitude of Gaussian beam12 which is a 
function of z. Now 
 

 
0

2 d ,
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where r varies from 0 to a (a is the aperture size). Simi-
larly we have, 
 

 
2

0

2 d ,
r

tP F r r   

 

Nonlinear transmittance 
 

 T = 
Power through the aperture ( )

.
Total power ( )

a

t

P
P

 (14) 

 

Figure 5 a and b show the variation of nonlinear transmit-
tance (T) with the sample position (Z) for both negative  
 

 
 
Figure 5. Graph represents nonlinear transmittance versus sample  
position using ABCD matrix formalism in two cases (a) for n2 < 0 and 
(b) for n2 > 0. 
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Figure 6. Closed aperture signature for CS2 material by comparing 
experimental Z-scan and ABCD matrix formalism dates. Y-axis repre-
sents normalized nonlinear transmittance. 
 
and positive n2 values respectively9. In the case of n2 < 0, 
the beam irradiance increases at the aperture, which 
causes an increase in power through aperture and hence 
we have a peak first in Figure 5 a. When the sample is 
brought to +Z, the irradiance decreases at aperture and 
hence we have a valley for +Z. As a result, we obtain a 
peak followed by a valley which is the negative nonlin-
earity as shown in Figure 5 a. An exactly opposite proc-
ess happens for n2 > 0 as shown in Figure 5 b. 
 CS2 is often used as a reference while measuring the 
nonlinearities of any new material9,11. When measure-
ments are carried out with an ultra-short femtosecond (fs) 
laser pulse, slow time scale phenomena such as thermal 
process are no longer significant and can be ignored. Par-
ticularly, in CS2 the molecular re-orientational Kerr effect 
becomes the dominant mechanism for nonlinear refrac-
tion. Using femtosecond pulses having a repetition rate 
1 kHz, wavelength ~800 nm, and pulse width of ~110 fs, 
the nonlinear refractive index of CS2 was measured. 
 The measurement was carried out in a solution with 
1 mm thickness cuvette and using fs laser pulses focussed 
with a beam waist 2w0 of 40 m from a Ti-sapphire laser. 
Femtosecond laser pulse has an intensity of (I0) = 
3.98  1011 W/cm2 at its focus, which was achieved by 
using a convex lens of focal length 120 mm, incident 
beam radius (2r1) of 3 mm and Rayleigh range (Z0) of 
1.57 mm. 
 The collecting aperture in front of the detector is kept 
at 480 mm from the focussing convex lens, and its size is 
approximately one fourth of r1. With the help of transla-
tion stage monitored by stepper motor, the sample is 
scanned along Z direction, and the transmitted light was 
collected through an aperture kept in front of the detector. 
Experimental data in Figure 6 shows that the valley-peak 
configuration of CS2 infers the positive sign of n2. This 
positive nonlinearity is due to Kerr effect in CS2. The 
black square dotted and red round dotted data points indi-
cate the experimental and theoretical results respectively, 
in Figure 6. The theoretical data points with respect to 
sample position were obtained from eq. (14) by ABCD 
matrix formulation method. The best fit for the experi-

mental data using the theoretical equation yields the 
nonlinear refractive index (n2) = 0.91  10–19 m2/W, 
which is very close to literature value14. This work proves 
that the evaluation of third order nonlinear refractive in-
dex can be achieved accurately using ABCD formulation. 
 We used ABCD matrix formalism of the Z-scan ex-
perimental configuration to obtain nonlinear refractive  
index of a standard sample such as CS2. The sign and 
magnitude of nonlinear refractive index of CS2 was 
measured and compared with literature value, which 
matches well with estimated value. We therefore con-
clude that the ABCD matrix formalism can be effectively 
used to measure nonlinearities of any nonlinear material. 
We believe that this ABCD matrix formulation has 
mathematical ease, especially for simulating Gaussian 
beam propagation through nonlinear medium. 
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