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Type-2 diabetes mellitus (T2DM) is an enervating and 
fast-growing disease characterized by hyperglycaemia. 
The increasing incidences of T2DM represent a public 
health problem. The disease is characterized by loss in 
sensitivity of tissues towards insulin, which can be re-
stored by the activation of peroxisome proliferator-
activated receptors (PPARs). PPARs are members of 
the nuclear receptor family, which function as a  
ligand-dependent transcription factor. The aim of the 
present work is to develop ligands, which can activate 
PPARs and are expected to lower LDL cholesterol and 
triglycerides, raise HDL cholesterol, and normalize 
hyperglycaemia. Here quantitative structure–activity 
relationship (QSAR) study is performed, followed by 
pharmacophore modelling and docking of the most  
active compound to the proteins PPAR- (PDB ID: 
1FM9) and PPAR- (PDB ID : 1K7L). Docking studies 
revealed the importance of hydrogen-bonding interac-
tions for the binding of targets with the ligand. QSAR 
study is performed on the dataset by means of multi-
ple linear regression and partial least squares (PLS) 
techniques. A good correlation is found by regression 
analysis between the observed and predicted activities 
as evident by their R2 (0.651), Q2 (0.649) and R2

pred
 

(0.606) for PPAR-, and R2 (0.784), Q2 (0.774) and 
R2

pred (0.841) for PPAR-. Subsequent analysis of the 
model by PLS cross-validation technique yields a simi-
lar set of coefficients. Pharmacophore studies reveal 
the importance of features like hydrogen bond donor, 
hydrogen bond acceptor and aromaticity, which con-
tribute significantly in both models and are essential 
for binding of ligands to the receptor and also for 
their proper functioning. 
 
Keywords: Chemometric modelling, diabetes mellitus, 
peroxisome proliferator-activated receptors, quantitative 
structure–activity relationship. 
 
DIABETES mellitus (DM), long considered a disease of 
minor importance to global health, is now a major threat 
to human health1. DM is becoming the leading cause of 
death in developed countries, being the fourth or fifth 
most common non-communicable diseases worldwide2. It 
is estimated that by 2025, 300 million people will be  

diabetic or prediabetic3. Developing countries such as  
India have seen maximum increase in DM in the last few 
years. In general, people with diabetes either totally lack 
insulin (type-1 diabetes mellitus or T1DM) or have too 
little insulin or cannot use it efficiently (type-2 diabetes 
mellitus or T2DM); T2DM accounts for 90–95% of all 
diabetic patients. DM is marked by raised blood glucose 
levels and is a heterogeneous group of diseases4. The  
increasing incidences of T2DM and its consequences in 
terms of cardiovascular morbidity and mortality represent 
a considerable public health problem5. Thus, for develop-
ing new therapeutic agents for the treatment of T2DM 
and other metabolic syndromes, it is necessary to identify 
the molecular targets of the transducers critically in-
volved in the control of glucose and lipid homeostasis. 
For cellular and whole-body glucose and lipid homeosta-
sis maintenance, metabolic nuclear receptor (NR) mole-
cules are found to be a particularly attractive target and 
play a key role in controlling glucose and lipid homeosta-
sis. Among these receptors, special attention has been 
paid for more than a decade to the members of the perox-
isome proliferator-activated receptor (PPAR) family6. 
 PPARs belong to the nuclear hormone receptor family 
and are defined as transcriptional factors that are acti-
vated by the binding of ligands to their ligand-binding 
domains (LBDs)7. There are three subtypes of PPARs8, 
namely PPAR-, PPAR-, and PPAR-, which share simi-
lar three-dimensional structure within LBDs, but display 
distinct tissue distribution pattern and different pharma-
cological profiles9. Thus ligands simultaneously activat-
ing all the PPARs can be strong candidates in relation to 
drugs and can be used to treat abnormal metabolic ho-
meostasis. Derivatives of 3-(4-alkoxyphenyl) propanoic 
acid are synthetic ligands which exhibit unique PPAR 
agonistic activities7. Saturated and unsaturated fatty acids, 
endogenous metabolites and synthetic ligands are known 
to activate PPARs10. PPAR- is mostly expressed in  
liver, kidney, skeletal, heart muscles and adrenal glands, 
as these tissues are involved in lipid oxidation11. PPAR- 
is expressed in macrophages, vascular smooth muscles 
and adipose tissue12. PPAR- was first determined as a 
key regulator for differentiation of an adipocyte, but  
recent molecular–biological studies have indicated that 
PPAR- activation is also linked to the expression of
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Table 1. Biological activity and structure of phenylpropanoic acid derivatives 

B

R3

R1

R2

 
 

 
 

Sl. no. 

 
 

R1 

 
 

R2 

 
 

R3 

 
 

B 

Activity experimental 
(EC50) µmol 

PPAR-    PPAR- 
      

αtrC1γtr 

  
OMe CH2NHCO 800 100 

trC2ts 

 
O(CH2)3CO2H OMe CH2NHCO 3000 220 

trC3tr 

 
CH2CH(Et)CO2H OMe CH2NHCO 400 4 

trC4tr 

 
CH2CH(n-Bu)CO2H OMe CH2NHCO 2500 100 

trC5tr 

 
CH2CH(OEt)CO2H OMe CH2NHCO 2800 160 

trC6ts 

  

OMe CH2NHCO 3000 7000 

tsC7ts 

 
 

OMe CH2NHCO 870 7300 

trC8tr 

 
 

OMe CH2NHCO 1700 3200 

trC9tr 

 
 

OMe CH2NHCO 8200 1900 

trC10tr 

  

OMe CH2NHCO 2000 1500 

trC11tr 

 
 

OMe CH2NHCO 7000 50,000 

trC12tr 

 
 

OMe CONHCH2 3000 7000 

trC13tr 

  

OMe CONHCH2 2600 1900 

tsC14ts 

 
 

OMe CONHCH2 2600 1900 

trC15ts 

 
 

OMe CONHCH2 2200 1000 

(Contd) 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 2, 25 JULY 2016 358 

Table 1. (Contd) 

 
 
Sl. no. 

 
 

R1 

 
 

R2 

 
 

R3 

 
 

B 

Activity experimental 
(EC50) µmol 

PPAR-    PPAR- 
      

trC16ts 

  

OMe CONHCH2 6000 1100 

trC17tr 

  

OMe CONHCH2 3600 6300 

trC18tr 

  

OMe CONHCH2 1900 1000 

trC19tr 

  

OMe CONHCH2 4900 1200 

tsC20ts 

 
 

OMe CONHCH2 800 850 

trC21tr 

  

OMe CONHCH2 9600 10,000 

tsC22ts 

 
 

OMe CONHCH2 4400 1200 

trC23tr 

  
OMe CONHCH2 820 880 

tsC24tr 

  

OMe CONHCH2 4600 4100 

trC25tr 

  

OMe CONHCH2 340 760 

trC26ts 

 
 

OMe CONHCH2 710 7400 

trC27tr 

 
 

OEt CONHCH2 460 5200 

tsC28tr 

  

On-Pr CONHCH2 780 6000 

trC29tr 

  

On-Bu CONHCH2 920 500 

(Contd) 
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Table 1. (Contd) 

 
 

Sl. no. 

 
 

R1 

 
 

R2 

 
 

R3 

 
 

B 

Activity experimental 
(EC50) µmol 

PPAR-    PPAR- 
      

tsC30tr 

  

On-Hexyl CONHCH2 830 1500 

trC31tr 

 
 

On-Bn CONHCH2 990 2900 

trC32tr 

 
 

OMe CONHCH2 2600 1800 

trC33ts 

  

On-Pr CONHCH2 1800 1200 

trC34tr 

  

On-Bu CONHCH2 1300 7700 

trC35tr 

  

OMe CONHCH2 1300 52,000 

tsC36tr 

 
 

OMe CONHCH2 2300 120,000 

trC37tr 

  

OMe CONHCH2 6200 820 

tsC38tr 

 
 

OMe CONHCH2 2200 4700 

trC39tr 

  

On-Bu CONHCH2 650 28,000 

tsC40ts 

  
– 

 

1400 7000 

trC41tr 

  

OMe CONHCH2 3600 23,000 

tsC42ts 
 

 

OMe CONHCH2 2400 2900 

(Contd) 
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Table 1. (Contd) 

 
 
Sl. no. 

 
 

R1 

 
 

R2 

 
 

R3 

 
 

B 

Activity experimental 
(EC50) µmol 

PPAR-    PPAR- 
      

tsC43tr 
 

 

OMe CONHCH2 1500 14,000 

trC44tr 

  

OMe CONHCH2 1000 82,000 

trC45tr 

  

OMe CH2NHCO 1000 100,000 

trC46tr 

  

OMe CONHCH2 8600 100 

tr, Training set ligand for PPAR-;  ts, Test set ligand for PPAR- ; tr,  Training set ligand for PPAR-; ts, Test set ligand for PPAR-. 
 

 
 

Figure 1. Common scaffold of phenylpropanoic acid derivatives. 
 
many important genes such as TNF-, leptin and adi-
ponectin genes that affect energy metabolism13. Devel-
opment of indigenously engineered remedies and cost-
effective treatment become important as costs of synthetic 
drugs have increased now. Chemometric modelling is 
part of the enormous field of cheminformatic technology 
that has become popular among the pharmaceutical in-
dustries and researchers to designate the drug targets by 
means of computational tools. Structure–activity relation-
ship (SAR), which is a statistical technique capable of 
analysing screening datasets and deriving predictive 
models of biologically interested activity, pharmacophore 
mapping and molecular docking are already proved vital 
chemometric techniques to optimize the drug candi-
dates14. In the present study, these chemometric tech-
niques are used to identify important features necessary 
for a compound to behave as an activator of PPAR- and 
PPAR- receptors. PPAR-/ transactivation activity is 
not examined, since the lead compound shows very weak 
PPAR-/ transactivation activity. 

Materials and methods 

In the present work a set of 46 phenylpropanoic acid deri-
vatives (Table 1) have been considered for quantitative 
structure activity relationship (QSAR)15 study to design 
potential lead compounds for the treatment of non-insulin 
dependent diabetes mellitus (NIDDM)6,16–19. Figure 1 
shows a common scaffold of phenylpropanoic acid  

derivatives. QSAR is the study of the quantitative  
relationship between experimental activity of a set of 
compounds and their physico-chemical properties using 
statistical methods. Structure generation and minimization 
(using Chem3D ultra)19, descriptor generation (using 
MOE)20, and QSAR studies by means of multiple linear 
regressions (MLR)21 and partial least squares (PLS)21 
analysis using SPSS22 have been performed on the data-
set. The interaction of the targets (PDB ID: 1FM9 and 
1K7L)23 with the most active compounds of the dataset 
has been observed via docking studies. A number of 
models have been generated and the best one selected 
based on high R2 (correlation coefficient) and Q2 (cross-
validated correlation coefficient) along with low se (stan-
dard error of estimation) and sp (standard error of predic-
tion), and good prediction of test set compound. 

QSAR 

This is a mathematical relationship between biological 
activity of a molecule and its chemical properties or 
chemical structure, and is a widespread approach for pre-
dicting biological activities in drug design. It is based on 
the assumption that the changes in molecular features  
of compounds can be correlated with variations in their 
physico-chemical/structural properties. 
 
 y = f (x), (1) 
 
where y is the biological activity and x is the chemical 
property or structural property. 
 The effective concentration data on phenylpropanoic 
acid derivatives (Table 1) are taken from the literature6,16–19. 
The dataset is divided into a training set for generating 
QSAR models and a test set for validating the quality of 
the models. The dataset is divided randomly keeping in 
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mind that biological activity of all compounds in the test 
set lies within maximum and minimum value range of  
biological activity of the training set compounds. The 
training set is considered for statistical analysis using 
MLR and PLS for model building methods21. QSAR 
models have been generated using the negative logarithm 
of half maximal effective concentration (pEC50) values as 
the dependent variable and values of descriptors as inde-
pendent variables. The independent variables (descrip-
tors) are calculated from MOE and care is taken that the  
descriptors used for model generation do not have inter-
correlation. 

Docking studies 

In order to check the binding interaction of the compound 
with PPAR- and PPAR- receptors, docking is per-
formed. The molecular docking tool, MOE20, is used to 
study binding modes of the most active compound to the 
receptor molecule. Fine 3D structure with a resolution of 
2.65 Å of nuclear receptors is retrieved from the Protein 
Data Bank (PDB)23. Hydrogen bonding interactions are 
the basic properties required for interaction between 
PPARs and phenylpropanoic acid receptors24. Docking 
algorithm is able to generate a large number of possible 
structures. Using this computational method, the pre-
ferred orientation of one molecule to a second when 
bound to each other to form a stable complex can be  
predicted26. 

Pharmacophore analysis 

Pharmacophores are a group of features that are significant 
in a set of molecules. A pharmacophore indicates impor-
tant groups necessary for the binding of ligands to the  
receptor binding pocket. The most common features are 
the presence of hydrophobic, aromatic ring, hydrogen 
bond acceptor and donor groups. The pharmacophore 
model can be used for virtual screening of ligands as well 
as for the de novo design of ligands to create completely 
novel candidate structures that conform to the require-
ments of a given pharmacophore. Pharmacophores are 
basically of three types, i.e. structure-based, ligand-based 
and both receptor- and ligand-based in which structure of 
the receptor, structure of the ligand and structure of both 
receptor and ligand is required respectively. For a phar-
macophore model preparation, several molecules are 
aligned to find common features among a set of mole-
cules which can be used for pharmacophore searching. 

Validation 

This is an important step of any SAR model to evaluate 
predictivity and robustness. In this study, QSAR models 

are validated both internally and externally. The best 
models are validated internally using leave-one out 
(LOO) cross-validation method26 followed by modified 
R2 (r2m) prediction27. During LOO cross-validation pro-
cedure, one compound is deleted randomly from the 
training set and the model is regenerated using the rest of 
the compound in each cycle; the new model generated is 
used to predict the activity of the deleted compound. Bet-
ter predictive ability of the model is explained by high Q2 
(>0.5) and low se (<0.5) values. r2m can be defined as the 
measure of the degree of deviation of the predicted activ-
ity from the observed ones, and the model may be con-
sidered if r2m >0.5. External validation is performed by 
test set prediction which proves the true predictivity of 
the model that is judged best by statistical parameters 
such as R2

pred (threshold value >0.5) and sp (threshold value 
<0.5)28. To judge the predictive ability of the model, r2m 
(test) value is calculated. To validate the binding models for 
docking studies, protein ligand binding energy is consid-
ered within the range –5 to –15 kcal/mol (ref. 29). 

Results and discussion 

QSAR study 

Phenylpropanoic acid derivatives, a potent PPAR- and 
PPAR- activator and active at micro-molar level (Table 
1), are considered in the present work for molecular mod-
elling. The biological activity, expressed as pEC50, is 
used as the dependent variable for modelling. A number 
of models have been prepared and the correlation coeffi-
cient is predicted using the MLR and PLS analysis me-
thod. Figure 2 shows a correlation plot between the 
experimental and predicted values of training and test sets 
for PPAR- and PPAR- agonists. 

PPAR- 

MLR analysis: The best univariate model shows TPSA 
which is a polar surface area (nTr = 34, R2 = 0.182) as the 
important feature contributing to the activity. Bivariate 
model is obtained with TPSA and SMR_VSA3 which is 
subdivided surface area (R2 = 0.322) descriptors. The 
rsynth (feasibility of chemical structure) descriptors do-
minate in explaining the variation in activity as evidenced 
by the final QSAR equation. 
 

 50pEC  = 9.487( 0.986) – 0.067( 0.010)   
 

   TPSA + 0.011( 0.002)  SMR_VSA3     
 

  – 1.457( 0.390) × rsynth + 5.970( 2.108)   
 

   vsurf_WP7 – 0.085( 0.031)  SMR_VSA4.     
  (Model 1) 
 

The values of independent variables used in Model 1 are 
not inter-correlated (R < 0.5; Table 2). The statistical
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Table 2. Correlation between descriptors used for PPAR- model generation 

Descriptors TPSA SMR_VSA3 rsynth vsurf_WP7 SMR_VSA4 
 

TPSA 1     
SMR_VSA3 0.171 1    
rsynth –0.345* 0.271 1   
Vsurf_WP7 0.232 –0.012 –0.107 1  
SMR_VSA4 –0.359* 0.270 0.120 –0.053 1 

 
 

 
 

Figure 2. Correlation plot between experimental and predicted  
activities of training and test set molecules of PPAR- and PPAR- 
agonists. 
 
 

quality of the model is: nTr = 34, R2
 = 0.651, Q2 = 0.649, 

se = 0.251, r2m = 0.638, nTs = 12, R2
pred = 0.606, sp = 

0.231 and r2m(test) = 0.592. 
 
PLS analysis: For the training set PLS analysis gave a 
model with correlation coefficient 0.784, which is further 
validated by evaluating the test set model using standard 
expression. 
 

 50pEC  = 9.487 – 0.067  TPSA + 0.011  
 
   SMR_VSA3 + 5.970  vsurf_WP7   
 
  – 0.085  SMR_VSA4 – 1.457  rsynth.   (Model 2) 
 
The model obtained from the MLR studies reveals the 
importance of TPSA (polar surface area), rsynth (feasibil-
ity of the chemical structure), SMR_VSA3 and 
SMR_VSA4 (subdivided surface areas) and vsurf_Wp7 
(polar volume) descriptors for the interaction of ligand 
and receptor. PLS studies (model 2) justify that the polar 
surface area, subdivided surface area, feasibility of chem-
ical structure and polar volume are crucial for the binding 
interaction of ligand and receptor. In the model, the nega-
tive value of the coefficient for polar surface area sug-
gests that increase in polar surface area is responsible for 
an increase in the activity of the molecule. The positive 
coefficient for the polar volume indicates that an increase 

in the polar volume positively affects the activity of the 
ligands. The coefficient for the van der Waals surface 
area is also negative, which implies that increase in the 
surface area of ligands enhances the activity, and hence 
the interaction between ligand and receptor also in-
creases. Furthermore, the smaller van der Waals surface 
area (SMR_VSA3) and polar volume of ligand have a 
positive impact on the effective concentration, as sug-
gested by the positive value of the coefficient. Table 3 
shows the values of the descriptors. 

PPAR- 

MLR analysis: The best univariate model shows E_ang 
(number of angle bend potential energy) (R2 = 0.276) as 
the important feature contributing to the activity. Bivari-
ate model is obtained with E_ang and PEOE_VSA_FPOS 
which is fractional van der Walls surface area 
(R2 = 0.514) descriptors. 
 
 50pEC  = 16.821( 2.108) + 0.024( 0.008)   
 
   E_ang – 16.195( 3.993)×PEOE_VSA_FPOS   
 
  +20.438( 3.458)  BCUT_SMR_1   
 
  + 24.772( 6.620)  GCUT_PEOE_2   
 
  – 0.693( 0.191)  opr_leadlike.   (Model 3) 
 
The values of independent variables used in model 3 are 
not intercorrelated (R < 0.5; Table 4). The statistical quality 
of the model is: nTr = 34, R2

 = 0.784, Q2 = 0.774, 
se = 0.426, r2m = 0.782, nTs = 12, R2

pred = 0.841, sp = 0.364 
and r2m(test) = 0.592. Table 5 provides the predicted ac-
tivity for training and test set compounds obtained from 
the model. 
 
PLS analysis: The model reveals the importance of 
number of angle bend potential energy (E_ang), fractional 
positive van der Waals surface area (PEOE_VSA_FPOS), 
atomic contribution to molar refractivity (BCUT_SMR_1), 
atom count and bond count descriptor (opr_leadlike) and 
partial charge (GCUT_PEOE_2) descriptors, which are 
also crucial in the MLR analysis. 
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Table 3. Values of descriptors used in QSAR studies 

Sl. no. TPSA rsynth SMR_VSA3 SMR_VSA4 Vsurf_WP7 E_ang PEOE_VSA_FPOS BCUT_SMR1 GCUT_PEOE_2 
 

C1 84.5 1 20.76 0 0 13.73 0.48 –0.39 0.07 
C2 75.63 1 17.99 0 0 34.92 0.52 –0.39 0.08 
C3 75.63 1 17.99 0 0 37.38 0.49 –0.39 0.05 
C4 75.63 1 17.99 0 0 28.33 0.49 –0.39 0.05 
C5 84.86 0.5 24.45 0 0 69.95 0.54 –0.36 0.08 
C6 75.63 1 17.99 0 0 14.84 0.49 –0.39 0.05 
C7 75.63 1 17.99 0 0 287.53 0.50 –0.39 0.04 
C8 75.63 1 17.99 0 0 13.70 0.50 –0.39 0.04 
C9 75.63 1 97.53 0 0 15.63 0.51 –0.39 0.05 
C10 84.86 1 104.83 0 0 20.66 0.51 –0.48 0.08 
C11 75.63 1 100.71 6.37 0 38.96 0.50 –0.40 0.06 
C12 75.63 1 17.99 0 0 14.45 0.49 –0.39 0.05 
C13 75.63 0.76 14.80 0 0 13.05 0.50 –0.40 0.05 
C14 75.63 0.76 17.99 0 0 12.98 0.50 –0.40 0.05 
C15 75.63 1 17.99 0 0 13.50 0.50 –0.39 0.04 
C16 75.63 0.77 17.99 0 0 10.91 0.50 –0.40 0.04 
C17 75.63 0.73 17.99 0 0 17.95 0.50 –0.40 0.05 
C18 75.63 1 17.99 0 0 14.24 0.50 –0.39 0.04 
C19 75.63 0.77 17.99 0 0 16.13 0.50 –0.40 0.04 
C20 84.86 1 22.10 0 0 19.08 0.51 –0.45 0.06 
C21 75.63 0.74 17.99 0 0 14.31 0.53 –0.35 0.04 
C22 84.86 0.77 20.04 0 0 21.95 0.52 –0.33 0.03 
C23 84.86 0.79 25.29 0 0 17.83 0.51 –0.47 0.06 
C24 84.86 0.79 25.29 0 0.13 17.33 0.51 –0.43 0.06 
C25 75.63 0.78 14.80 6.37 0 13.24 0.49 –0.41 0.07 
C26 75.63 0.31 14.80 6.37 0 14.21 0.49 –0.41 0.07 
C27 84.86 0.79 23.23 0 0 19.30 0.52 –0.41 0.06 
C28 84.86 0.8 23.23 0 0 18.98 0.52 –0.40 0.06 
C29 84.86 0.79 25.29 0 0 17.59 0.51 –0.47 0.05 
C30 84.86 0.79 28.79 0 0 17.53 0.49 –0.47 0.05 
C31 84.86 0.79 25.29 0 0 17.85 0.47 –0.47 0.05 
C32 75.63 0.76 17.99 0 0 13.19 0.50 –0.40 0.05 
C33 75.63 0.77 17.99 0 0 8.53 0.47 –0.39 0.05 
C34 75.63 0.77 17.99 0 0 9.01 0.47 –0.39 0.05 
C35 75.63 0.78 17.99 0 0 9.80 0.47 –0.39 0.05 
C36 75.63 0.79 17.99 0 0 11.42 0.47 –0.39 0.05 
C37 75.63 0.8 21.17 0 0 32.14 0.44 –0.41 0.08 
C38 75.63 1 17.99 0 0 14.47 0.50 –0.39 0.04 
C39 75.63 1 17.99 0 0 8.75 0.48 –0.39 0.04 
C40 75.63 1 17.99 0 0 13.89 0.48 –0.39 0.04 
C41 75.63 0.73 17.99 0 0 13.47 0.50 –0.40 0.05 
C42 75.63 0.71 17.99 0 0 13.99 0.50 –0.40 0.05 
C43 75.63 1 17.99 0 0 15.09 0.50 –0.39 0.04 
C44 75.63 1 17.99 0 0 14.31 0.50 –0.39 0.04 
C45 75.63 1 17.99 0 0 25.02 0.48 –0.39 0.04 
C46 59.42 1 15.73 4.12 0 15.19 0.46 –0.34 0.00 

 
 
 50pEC  = 16.128 + 0.693  opr_leadlike  
 
 + 0.024  E_ang – 16.194  PEOE_VSA_FPOS   
 
 + 20.438  BCUT_SMR_1 + 20.772  
 

   GCUT_PEOE_2.  (Model 4) 
 
The model obtained from MLR studies reveals the impor-
tance of E_ang descriptors for the interaction of ligand 
and receptor. In the model, the positive value of coeffi-
cient for E_ang suggests that angle bend potential energy 

is responsible for an increase in the activity of the mole-
cules. The negative coefficient for PEOE_VSA_FPOS 
indicates that an increase in the fractional positive van 
der Waals surface area positively affects the activity of 
the ligands. Furthermore, the negative value of coeffi-
cient for opr_leadlike descriptor indicates that higher  
values of atom and bond count will enhance the activity 
of the molecules while positive values of coefficient of 
BCUT_SMR_1 and GCUT_PEOE_2 indicate that molar 
refractivity of ligands and partial charge have a positive 
impact on the effective concentration of molecule respec-
tively. The model obtained from the PLS studies (model 4)
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Table 4. Correlation between descriptors used for PPAR- model generation 

Descriptors E_ang PEOE_VSA_FPOS BCUT_SMR_1 GCUT_PEOE_2 opr_leadlike 
 

E_ang 1     
PEOE_VSA_FPOS 0.317 1    
BCUT_SMR_1 0.106 –0.016 1   
GCUT_PEOE_2 0.460** 0.227 –0.455** 1  
opr_leadlike –0.038 0.251 0.419* –0.002 1 

 
 

Table 5. Predicted and observed activities of training and test sets 

 Predicted activity 
 

  Observed activity (logEC50) PPAR- PPAR- 
Sl. no. 
(dataset) PPAR- PPAR- MLR PLS MLR PLS 
 

C1 2.90 3 2.6 2.6 2.28 2.28 
C2 3.48 3.34 3.27 3.27 2.73 2.73 
C3 2.60 1.60 3.16 3.16 2.28 2.28 
C4 3.40 3 3.16 3.16 2.05 2.05 
C5 3.45 3.20 3.34 3.34 3.57 3.57 
C6 3.48 1.85 3.27 3.27 1.74 1.74 
C7 2.94 1.86 3.27 3.27 1.83 1.83 
C8 3.23 1.51 3.16 3.16 1.4 1.4 
C9 3.91 1.28 4.04 4.04 1.43 1.43 
C10 3.30 1.18 3.5 3.5 1.12 1.12 
C11 3.85 2.70 3.53 3.53 2.86 2.86 
C12 3.48 1.85 3.16 3.16 1.73 1.73 
C13 3.41 1.28 3.48 3.48 1.29 1.29 
C14 3.41 1.28 3.43 3.43 1.78 1.78 
C15 3.34 1 3.27 3.27 1.13 1.13 
C16 3.78 1.04 3.43 3.43 1.11 1.11 
C17 3.56 1.80 3.55 3.55 1.59 1.59 
C18 3.28 1 3.16 3.16 1.14 1.14 
C19 3.69 1.08 3.5 3.5 1.24 1.24 
C20 2.90 0.93 2.89 2.89 1.04 1.04 
C21 3.98 2 3.54 3.54 1.8 1.8 
C22 3.64 1.08 3.63 3.63 1.2 1.2 
C23 2.91 0.94 2.93 2.93 0.98 0.98 
C24 3.66 1.61 3.68 3.68 1.68 1.68 
C25 2.53 0.88 2.9 2.9 1.73 1.73 
C26 2.85 1.87 2.84 2.84 1.75 1.75 
C27 2.66 1.72 2.9 2.9 2.09 2.09 
C28 2.89 1.78 2.89 2.89 1.64 1.64 
C29 2.96 0.70 2.92 2.92 0.61 0.61 
C30 2.92 1.18 2.96 2.96 1.19 1.19 
C31 3.00 1.46 2.92 2.92 1.26 1.26 
C32 3.41 1.26 3.51 3.51 1.48 1.48 
C33 3.26 1.08 3.43 3.43 1.92 1.92 
C34 3.11 1.89 3.49 3.49 1.94 1.94 
C35 3.11 2.72 3.48 3.48 2.63 2.63 
C36 3.36 3.08 3.46 3.46 3.09 3.09 
C37 3.79 4 3.49 3.49 4.06 4.06 
C38 3.34 0.91 3.16 3.16 1.1 1.1 
C39 2.81 1.61 3.16 3.16 2.26 2.26 
C40 3.15 2.45 3.27 3.27 2.49 2.49 
C41 3.56 1.85 3.55 3.55 1.48 1.48 
C42 3.38 2.36 3.47 3.47 1.78 1.78 
C43 3.18 1.46 3.16 3.16 1.11 1.11 
C44 3.00 2.15 3.16 3.16 1.84 1.84 
C45 3.00 2.91 3.16 3.16 2.63 2.63 
C46 3.93 3 3.87 3.87 2.81 2.81 
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reveals the importance of all the above descriptors for in-
teraction of ligand and receptor. From the PLS and MLR 
studies of the dataset similar results are obtained, which 
justify that smaller van der Waals surface area and atom 
and bond count favour the activity of molecules while  
increase in angle bend potential energy, molar refractivity 
and partial charge can contribute in enhancing the activity. 

Validation of QSAR models 

Internal validation: The activity of the training com-
pounds is predicted using LOO cross-validation method 
in QSAR studies of both - and -subtypes. Q2 is found 
to be 0.649 and 0.774 for model 1 and model 3 respec-
tively, whereas SE 0.251 and 0.426 respectively. The r2m 
value for the respective models is 0.638 and 0.782. The 
statistical results (Q2 and r2m > 0.5) of the both studies 
show that the selected models are robust. 
 
External/test set validation: The activity of the test 
compounds is predicted in QSAR studies. Correlation (R) 
between observed and estimated activities of test com-
pounds is 0.777 and 0.917 for model 1 and model 3 re-
spectively. In QSAR study, R2

pred is 0.606 with sp = 
0.231, and it is 0.841 with sp = 0.364 for model 1 and 
model 3 respectively. For better determination of the pre-
dictive abilities of the models, the value of r2m (test) is 
also calculated. To determine whether the predicted acti-
vity values are close to the corresponding observed ones 
the value of r2m (test) is predicted, as the high value of 
R2

pred may not always indicate a low residual between the 
observed and predicted activity data. In QSAR study, the 
r2m (test) value is found to be 0.592 and 0.837 for model 
1 and model 3 respectively. It is observed that all models 
in the present study show high R2

pred (>0.5) and r2m (test) 
(>0.5) values, which explains the superiority of these 
models. 

Docking studies 

PPAR- : To further observe the interactions, docking 
study is performed and the most active compound is 
docked for its binding interactions with the active site of 
(PDB 1FM9) protein. Hydrogen bond (HB) is the most 
widely used parameter for evaluation of docking results, 
as it is an influential parameter in the activity of the drug 
compound. The number of HB interactions is observed 
via docking. The docked conformation of compounds re-
veals that the compound interacts with the binding pocket 
residues (GLN286, ASP243, LYS232, HIS449, LYS232, 
GLU295 etc.) of targeted proteins through several  
favourable interactions, including HB donor and acceptor 
with residue GLU295 and LYS232 respectively (Figure 
3). The N atom present in the ligand behaves as a HB  
donor and interacts with the GLU295 residue, while the 

LYS232 residue interacts with terminal hydroxyl group 
which behaves like a HB acceptor. The HB feature is also 
observed in the QSAR studies.  
 
PPAR-: To further support the QSAR results, the most 
active compound is docked for its binding interactions in 
the active site of (PDB 1K7L) protein. Group R is at the 
entrance of the pocket and is surrounded by THR279, 
SER280, LEU321, PHE273, LYS257, GLU282 residues 
of targeted proteins (Figure 4). The presence of a hydro-
gen bonding feature is found crucial for the interaction, 
which is also observed in the QSAR studies. Residue 
LYS257 and GLU282 are found to show favourable in-
teraction, including HB donor and HB acceptor with the 
most active conformer. The GLU282 residue in receptor 
binding pocket interacts with the terminal hydroxyl group 
of most active conformer while the LYS257 residue 
 
 

 
 

Figure 3. Interaction between receptor pocket of PPAR- and most 
active ligand. 

 
 

 
 

Figure 4. Interaction between receptor pocket of PPAR- and most 
active ligand. 
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shows HB interactions with the oxygen atom of carbox-
ylic group of conformer. 
 The docking study is performed on the receptor  
molecules with the most active compound for both 
PPAR- and PPAR- reveals the importance of HB donor 
and acceptor character which is also observed in the 
QSAR studies, and hence signifying the validity of the 
model. 

Validation of docking studies 

The docking analysis between the receptor molecules 
PPAR- and PPAR- and the most active compound gives 
binding energy of –9.36 and –9.66 kcal/mol respectively, 
for the best docking pose. This is further compared with 
the binding energy for the interaction of available phe-
nylpropanoic acid-based drug, ragaglitazar (zinc ID: 
ZINC01481830)30 with the  and  subtypes, which is 
found to be –9.48 and –9.76 kcal/mol respectively. The ob-
tained binding energy for the interaction falls within the 
threshold range (between –5 and –15 kcal/mol), which  
implies that the binding models for both subtypes are  
acceptable. Also, the above comparative analysis  
implies that the binding energy of interaction for the most 
active ligand with the respective receptors is close to that 
of the available drug and hence verifies the validity of the 
binding model. 

Pharmacophore development 

Using the Pharmacophore Query Editor tool in MOE,  
the Pharmacophore model has been developed. This 
 
 

 
 

Figure 5. Pharmacophore model of PPAR- full agonists (pink: F1: 
Don & Acc, cyan : F2, F3, F4 : Acc, magenta : F5: Don, yellow: F6: 
Aro). 

application generates a pharmacophore query by a com-
puterized representation of the binding interactions with a 
particular active site using a hypothesized pharma-
cophore. A pharmacophore query in MOE is a set of fea-
tures created typically from ligand annotation points. The 
pharmacophore model is developed by alligning the five 
most active agonists (Figure 5). It outlines six important 
pharmacophore features that are observed in the most ac-
tive agonists: four polar atoms and functional groups  
capable of performing HB (F1, F2, F3, F4 and F5), and 
aromatic structural elements (F6). The hydropho-
bic/aromatic features stabilize the positions of the hydro-
philic ones; the terminal F1 donor and acceptor feature 
can form HB with the oxygen atom, which is also con-
firmed by docking interactions, and F6 features are  
directed inside and contribute additionally to the stabili-
zation of the ligand pose into the pocket. F2, F3 and F4 
are the acceptor features contributing to the hydrogen 
bond interaction as evidenced by docking interactions of 
LYS257 residue with F2 feature. Similar functions can be 
assigned to the F5 feature being the donor group of inter-
acting with the GLU295 residue, either directly or 
through water molecules. Thus the hydroxyl group is found 
to be crucial for the binding of ligand to the receptor, as 
evident from the pharmacophore and docking studies. 

Conclusion 

From the MLR and PLS analysis studies of the com-
pounds, we have obtained descriptors which contribute 
significantly to both subtypes. Features like polar surface 
area, van der Waals surface area and polar volume are 
important for better prediction of activity and binding  
interaction of ligands with the PPAR- receptor. Further-
more, features like angle bend potential energy, refracti-
vity of ligands, partial charge and fractional positive van 
der Waals surface area are crucial for binding of ligands 
to the PPAR-  receptor. Docking studies between recep-
tor and most active compound supports the fact that hy-
drogen bonding interaction is important for binding 
interaction of ligands to the receptors, which is confirmed 
by the pharmacophore studies. Thus, the hydroxyl group 
is found to be significant for the binding of ligand to the  
receptor, as justified by the pharmacophore modelling 
and docking studies. 
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