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Bus travel times are prone to high variability, espe-
cially in countries that lack lane discipline and have 
heterogeneous vehicle profiles. This leads to negative 
impacts such as bus bunching, increase in passenger 
waiting time and cost of operation. One way to mini-
mize these issues is to accurately predict bus travel 
times. To address this, the present study used a model-
based approach by incorporating mean and variance 
in the formulation of the model. However, the accu-
racy of prediction did not improve significantly and 
hence a machine learning-based approach was consid-
ered. Support vector machines were used and predic-
tion was done using -support vector regression with 
linear kernel function. The proposed scheme was im-
plemented in Chennai using data collected from pub-
lic transport buses fitted with global positioning 
system. The performance of the proposed method was 
analysed along the route, across subsections and at 
bus stops. Results show a clear improvement in per-
formance under high variance conditions. 
 
Keywords: Bus travel time, high variance conditions, 
prediction accuracy, support vector machines. 
 
AUTOMATIC vehicle location (AVL) systems are being 
implemented in public transit systems in many Indian  
cities. The main benefit of using AVL systems is the 
availability of high quality and quantity of pertinent data 
such as vehicle locations, speed and travel times. Such in-
formation can be used to improve the reliability of transit 
passenger information system and transit management 
system, which can, in turn, improve the overall service 
quality. However, travel times in urban areas are prone to 
high degrees of variability due to the presence of signals, 
traffic congestion, geometric conditions of roads and 
weather conditions. This is particularly serious in the het-
erogeneous and lane-less traffic existing in countries such 
as India. Under such traffic conditions, various types of 
vehicles such as cars, buses, light and heavy motor vehi-
cles, two-wheelers and bicycles share the road without 
any segregation for the various vehicle types. This leads 
to high levels of uncertainties and variability in traffic 
characteristics such as travel time. Furthermore, transit 
vehicles are frequently disturbed by congestions on ser-

vice routes at different times of the day due to  
intersection delays, variations in demand, and excessive 
dwell times at bus stops. All these contribute to stochas-
ticity, resulting in significant deviations in overall travel 
times. Problems such as bus bunching, increase in pas-
senger waiting times, increase in the cost of operation, 
deterioration of schedule adherence, etc. result from such 
stochasticity, which could discourage passengers from  
using the transit system. One solution to address this 
problem is by providing information of bus arrival times 
and expected delays at all bus stops. 
 Developing models to predict bus travel times under 
such conditions is a difficult task. Prediction methods that 
work elsewhere in the world may be impractical for the 
aforementioned Indian traffic conditions. The following 
section reviews existing studies that have been carried out 
in the area of bus travel time predictions under both  
homogeneous and heterogeneous traffic conditions. 

Literature review 

There have been many studies on the prediction of travel 
times using techniques such as historical and real-time 
methods1–4, statistical methods5–7, machine learning  
methods8–11 and model based methods12–15. Most of these 
studies were developed or tested for lane-disciplined and 
homogeneous traffic conditions. However, traffic condi-
tions in many countries are different due to lack of lane 
discipline and heterogeneity. Very few studies are avail-
able for traffic under such conditions16–20. Even these 
studies do not focus on addressing the problem of high 
variability. The present study focuses on this problem and 
develops a system for bus travel time prediction (BTTP) 
under high variability conditions. 
 A review of the literature shows that Kalman filtering 
technique (KFT) and support vector machines (SVMs) 
are promising prediction tools to address the high vari-
ability problem. Dailey et al.12 used a combination of 
AVL and historic database to predict travel time using 
KFT and statistical analysis. Cathey and Dailey13 used 
bus travel time data as inputs to predict travel times using 
KFT that involved three components, viz. tracker, filter 
and predictor. Shalaby and Farhan14 used a combination 
of AVL and automatic passenger count (APC) data to 
predict travel time using KFT. Nanthawichit et al.15 used 
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a combination of global positioning system (GPS) and 
loop detectors to estimate travel time using KFT. 
 All of the above studies were performed under homo-
geneous traffic conditions; only a limited number of stud-
ies have been reported for heterogeneous traffic. 
Vanajakshi et al.16 proposed a model-based method using 
a space discretization approach to predict bus travel time. 
They used GPS data of previous two bus trips to predict 
next bus travel/arrival time using KFT. Padmanabhan et 
al.17 extended the above study by explicitly analysing the 
dwell times. However, the above studies used data from 
two previous bus trips alone as inputs, without consider-
ing the patterns in travel time. Kumar and Vanajakshi18 
subsequently identified the most significant trips and  
incorporated them in the analysis18. The study analysed 
weekly patterns and trip-wise patterns in bus travel time 
data, and reported a strong weekly pattern followed by a 
trip-wise pattern. Vivek et al.19 used GPS data to predict 
bus travel time using ANN, and the results were com-
pared with those of space discretization methods. Kumar 
et al.20 used a time discretization approach to predict bus 
travel time by considering temporal evolution in travel 
time. The results were compared with the space discreti-
zation approach16, considering the evolution of travel 
time between spatial sections. It was shown that time dis-
cretization performed better than space discretization. 
 Bin et al.8 used SVM to predict bus arrival time for 
four patterns, viz. peak traffic on sunny day (SP), off-
peak traffic on sunny day (SO), peak traffic on rainy day 
(RP) and off-peak traffic on rainy day (RO). Results were 
reported to be promising compared to the ANN method. 
Wu et al.9 used data from intelligent transportation web 
service project (ITWS) to predict travel time using SVM 
and showed that SVM gave better results than historic and 
real-time methods. Vanajakshi and Rilett10,11 used SVM and 
ANN for short-term prediction of traffic parameters and re-
ported SVM as a viable alternative to ANN. The study con-
cluded that SVM would be a better choice for the prediction 
of travel time, when only a small amount of data is avail-
able for training, or when the training data have more varia-
tions10. Based on these reported advantages of SVM, 
especially when the variability is high, the present study 
explored its use for BTTP under Indian traffic conditions. 
 The main objective of the present study is to predict 
bus travel time/arrival time, paying special attention to 
the high variance problem. The first part of the study re-
formulates an existing model-based approach reported by 
Kumar et al.20, to take high variance into account. The 
study reported high errors in sections with high variabil-
ity. To address this issue, the problem was reformulated 
to explicitly incorporate the variance. This was attempted 
due to the possibility of incorporating the variance of the 
process disturbance and measurement noise into the Kal-
man filter formulation. 
 The second part uses SVM to address the same prob-
lem. From the literature, it was found that the SVM tech-

nique performs better than ANN and other standard 
techniques for prediction problems when the variability 
in data is high10. However, no significant studies have 
been reported on the use of SVM to predict bus travel 
times under Indian traffic conditions. Thus the present 
study uses the SVM technique for bus travel time predic-
tion under Indian traffic conditions. 

Data collection and preliminary analysis 

GPS units are commonly used to collect data for applica-
tions that involve continuous tracking of vehicles and 
providing their location information at selected intervals. 
In the present study, data were collected using GPS units 
fixed in buses belonging to the Metropolitan Transport 
Corporation (MTC) in the city of Chennai, Tamil Nadu, 
India. The route selected for the study was 19B, which 
spans 30 km with varying land use, and traffic and geo-
metric characteristics. It connects Saidapet, a major 
commercial area located in the southern part of the city, 
to Kelambakkam, a sub-urban area of the city. There are 
20 bus stops and 13 intersections in this route. Table 1 
gives the distance between the bus stops and cumulative 
distance from the initial bus stop. 
 The average time headway between two consecutive 
vehicles in this route is about 15–30 min. Data were sent 
every 5 sec from 6 a.m. to 8 p.m., and data collected over 
30 days were used in the study. The collected GPS data 
included the latitude and longitude information at fixed 
time intervals, time stamp corresponding to each entry 
and ID of the GPS units. Data were communicated in real 
time through general packet radio service (GPRS) and 
stored using sequential query language (SQL) database. 
Individual files were generated separately for each day. 
The distance travelled between two consecutive time  
intervals was then calculated using Haversine formulae21, 
which provides the great circle distance between two 
points on a sphere from their latitudes and longitudes as 
 
Distance ( ) 2  arcsind r  
 

2 1 1 2 2 1( haversin( ) cos φ cos φ haversin( ))      , (1) 
 
where 1, 2 indicate the latitude of points 1 and 2; 1, 2 
indicate the longitude of points 1 and 2, and r is the ra-
dius of the earth. Thus, the processed data comprised of 
the distance between consecutive locations of all the bus-
es and corresponding time stamps. The entire road stretch 
was divided into subsections of 100 m length, and linear 
interpolation technique was adopted to calculate the time 
taken to cover each subsection. In the present study, the 
travel time variations were considered over time, similar 
to Kumar et al.20. The collected data were grouped into 
14 time periods of one hour interval each, in order to 
visualize the travel time variation within a section over
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Table 1. Distance between bus stops in 19B route 

 Distance between Cumulative distance from  
Bus stop bus stops (km) the initial bus stop (km) 
 

Kelambakkam 0.00 0.00 
Hindusthan Engineering College 2.51 2.51 
SIPCOT  3.40 5.91 
Navallur 1.61 7.52 
Navalur Church 2.50 10.02 
Semmaancheri 1.01 11.03 
Kumaran Nagar 1.28 12.31 
Shozhinganallur PO Office 1.43 03.74 
Karapakkam 1.81 15.55 
TCS 0.41 15.96 
Mootachavadi 1.46 17.42 
Mettupakkam 0.79 18.21 
Thorapakkam 0.60 18.81 
Tirumailai Nagar 1.25 20.06 
Kanadachavadi 1.66 21.72 
Lattice Bridge 1.73 23.45 
Womens Poytechnic College 1.36 24.80 
Madhya Kailash 1.01 25.82 
Engineering College 0.82 26.64 
Saidapet 3.30 29.94 

 
 

 
 

Figure 1. Travel-time variation in subsection 46 over a period of one week. 
 
 
many days. Figure 1 shows the variations in travel times 
over a period of one week for a typical subsection, viz. 
subsection 46. 
 From Figure 1, it can be seen that travel times from 
8 a.m. to 10 a.m. and 4 to 7 p.m. are relatively high, indi-
cating peak hours. It can also be observed that the peak 
hours have more variance than the off-peak hours. 

Methodology 

Model-based approach 

A promising method to predict bus travel/arrival times 
under heterogeneous traffic conditions is the time discre-

tization-based model reported by Kumar et al.20. This is 
used as the base approach in the present study. Further 
analysis of the results reported in that study20 showed that 
the performance of the method was lower for subsections 
with high mean and variance. In order to analyse the rea-
sons for this behaviour, these critical subsections were 
located on a map. They were found to be mostly around 
intersections and bus stops, which leads to high mean and 
variance and in turn, to reduced performance. Hence, the 
first part of the study explicitly incorporated the variance 
into the model formulation to capture the high variance. 
In time discretization approach, the section was discre-
tized into smaller subsections. The travel time of a bus in 
the upcoming time intervals was predicted using the data 
obtained from many earlier bus trips from the same
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Figure 2. Variation in travel time across various subsections of the study route. 
 
subsection. The model hypothesized a temporal relation 
in travel time and proposed a method to predict tra-
vel/arrival time. 
 KFT was used as the estimation tool22. It can be used  
to estimate state variables, which are used to characterize 
system/processes, if the system equations can be repre-
sented in state space form. Implementation of the Kalman 
filter requires dynamic and statistic information of the 
system disturbances and measurement errors. It uses the 
model and system inputs to predict the a priori state es-
timate and uses the output measurements to obtain the a 
posteriori state estimate. Overall, it is a recursive algo-
rithm, so that new measurements can be processed when 
they are obtained. It needs only the current instant state 
estimate and current input and output measurements to 
calculate the state estimate of the next instant. The inputs 
for such a prediction method were the travel time data 
from several previous buses in the section under consid-
eration. 
 In the present study, the existing method was modified 
by incorporating mean and variance of travel time in each 
subsection separately, to capture the variability in travel 
time. The evolution of travel time between various travel 
time intervals in a given subsection is assumed to be 
 

 ( 1) ( ) ( ) ( ),x t a t x t w t    (2) 
 
where a(t) is a parameter that relates the travel time in a 
given subsection over different trips, x(t) is the time taken 
to travel for a given subsection at time interval, t and w(t) 
is the associated process disturbance. The measurement 
process was assumed to be governed by 
 

 ( ) ( ) ( ),z t x t v t   (3) 
 

where z(t) is the measured travel time in a given subsec-
tion at time t, and v(t) is the measurement noise. It was 
further assumed that both v(t) and w(t) are zero mean 
white Gaussian noise signals, with Q(t) and R(t) being the 
corresponding variances. 
 As can be seen from Figure 1, apart from the median 
travel time, the variance of travel times increases during 

peak hours. Figure 2 shows the change in variance spa-
tially. It can be seen that there are selected sections where 
the variance is much higher than other sections. These 
may correspond to sections with bigger intersections or 
bus stops. 
 
Implementation using model-based approach: In order 
to address the issue of high variability, the Q(t) and R(t) 
values, which represent the variance of the process dis-
turbance and measurement noise in the time discretization 
method respectively, are updated using the latest avail-
able travel times in the same subsection as detailed in the 
steps below. Thus, the proposed scheme needs two sets of 
data for implementation, in which one set is used for the 
time update equations to calculate the parameter a(t) and 
the other for the measurement update equations to gener-
ate the a posteriori estimate of travel time. The input data 
were taken as mentioned in Kumar et al.20. The steps  
followed were the same as those in the earlier study until 
step 3, as follows: 
 
1. The route under consideration was divided into N sub-

sections of equal length (100 m). 
2. Let the length of the dataset 1 be g. The travel time 

data from dataset 1 were used to obtain the value of 
a(t) through 

 

  ( 1)( ) , 1, 2,3,..., ( 1).
( )

x ta t t g
x t


    (4) 

 
3. Let TV ( )x t  denote travel time of the test vehicles 

(TV) (the vehicle for which the travel time needs to be 
predicted) to cover a given subsection. It is assumed 
that 

 

 TV ˆ[ (1)] (1),E x x  (5) 
 

 2
TV ˆ[ (1) (1) ] (1),E x x P   (6) 

 

where ˆ( )x t  is the travel time estimate of a TV in the tth 
time interval. Step 4 incorporated the actual mean and  
variance in travel time as explained below. 
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4. For t = 2, 3, 4,…, (g – 1), the following steps were 
performed: 

 
a. The a priori travel time estimate was calculated using 

ˆ ˆ( 1) ( ) ( )x t a t x t   , where the superscripts ‘–’ and 
‘+’ denote the a priori and a posteriori estimates re-
spectively. 

b. The a priori error variance, P– was calculated using 
 

  ( 1) ( ) ( ) ( ) ( ).P t a t P t a t Q t     (7) 
 
c. The Kalman gain, K was calculated using 
 
 1( 1) ( 1)[ ( 1) ( 1)] .K t P t P t R t         (8) 
 
d. The values of Q(t) and R(t) were calculated as follows: 
 

Using eqs (2) and (3), one can compute Q(t) and R(t) 
as 

 

 21( ) ( ( ) ( )) ,
k

i k S
Q t w i w k

S  
   (9) 

 

 21( ) ( ( ) ( )) ,
S

i k S
R k v i v k

S  
   (10) 

where 
 

 
( ) ( )

( ) , ( ) ,

k k

i k S i k S
w i v i

w k v k
S S

    
 

 

 
  S is the number of previous buses travel time data 

used to compute the error covariance. 
e. The a posteriori travel time estimate was calculated 

by considering the mean error obtained from the 
measurement noise and error variance using 

 

 ˆ ˆ( 1) ( 1) ( 1)x t x t K t       
 

       ˆ[ ( 1) ( 1) ( 1)],z t x t x t      (11) 
 

 ( 1) [1 ( 1)] ( 1).P t K t P t       (12) 
 
Thus, the objective here is to predict the travel/arrival 
time of TV using the travel times obtained from several 
previous vehicles in the given subsection. The above 
scheme was implemented in MATLAB. Figure 3 presents 
a sample plot showing a comparison of the predicted and 
measured travel times over the study stretch. For evaluat-
ing the effect of explicitly incorporating variance into the 
formulation (known as modified time discretization  
approach; MTDA), results obtained using the base 
method without incorporating variance (known as the 
base method) were also plotted in the figure. 

 The quantification of errors was done using mean abso-
lute percentage error (MAPE) (eq. (13)) and the values 
obtained were 19.95% and 20.94% for the proposed and 
base approaches. This was calculated for multiple trips 
and the results are presented in Figure 4. 
 

 

p a

a1MAPE ,

N

i

x x
x

N







 (13) 

 
where Xp is the predicted travel time obtained from the 
prediction algorithm to cover a given subsection and Xa is 
the corresponding travel time measured from the field. 
 From Figure 4, it can be observed that the predicted 
travel times closely match the actual travel times in both 
cases. However, it can be observed that incorporation of 
variance into the formulation did not show much differ-
ence in performance or led only to a slight improvement 
in performance, indicating the need for some other pre-
diction method. The literature showed SVM to perform 
better under high variance situation10, and hence this was 
used as detailed in the next section. 

Support vector machines 

SVMs are learning systems that use a hypothetical space 
of linear functions in a high-dimensional feature space, 
trained with a learning algorithm. Figure 5 explains the 
concept of a SVM. The main idea behind a SVM is that, 
for a given training sample, a hyper plane is constructed 
as the decision surface in such a way that the margin of 
separation between positive and negative examples is 
maximized23. This means that two sets of data points in 
the input space (which may be of dimension d) that are 
nonlinearly separable can be transferred into higher  
dimension (D) space using proper kernel function, and 
can thus be made linearly separable. The higher dimen-
sion should be greater than input dimensions (D  d) 
(ref. 23). In this higher dimension, a hyper plane can be 
constructed between the two sets of data points such that 
the margin of separation between the two is maximized. 
SVMs are based on the structural risk minimization 
(SRM) inductive principle, which seeks to minimize an 
upper bound of the generalization error consisting of the 
sum of the training error and confidence level. The basic 
idea of support vector regression (SVR) is to map the  
data into high-dimensional feature space via nonlinear 
mapping and perform linear regression in this space. This 
linear regression in high-dimension space is equivalent to 
nonlinear regression in the low-dimension input space. 
 Consider a set of training data points (x1, y1), (x2, y2), …, 
(xn, yn), where xn is an n-dimensional input vector such as 
previous travel times of current segment, and yn is the  
desired value. Let nŷ  be the predicted value such as travel
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Figure 3. Comparison of predicted and actual travel times for a sample trip. 
 
 

 
 

Figure 4. Errors obtained for various trips on a day using modified time discretization approach (MTDA) and base  
methods. 

 
 

 
 

Figure 5. Basic idea of a support vector machine (SVM)9. 
 
 
time of next segment, and n is the number of training 
samples. Then, the output data vector can be in the form 
 
 ( ).y f x  (14) 
 
SVM approximates the function in eq. (14) using the fol-
lowing form 
 

 0 0
1

ˆ( , ) ( ) ( ) ,
n

t
i i

i
y x x x      


     (15) 

where ( )x  represents the high-dimensional feature spaces 
that were nonlinearly mapped from the input space x. The 
coefficients 0 ,  ,  etc. are estimated by solving a con-
strained optimization problem using Lagrangian multi-
plier method. The regression problem can be solved using 
-support vector regression (SVR) proposed by Scholkopf 
et al.24. The optimization equations for -SVR are 
 Cost function 
 

 2

1

1 || || ( ),
2

N

n n
n

cw c
N

  


    (16) 

 
Constraints: 
 
 ˆ ,n n ny y      
 
 ˆ ,n n ny y       
 
 0,n    
 
 0,n    
 
 0.   (17) 
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In dual form, the above can be represented as 
 
 1

1
( , ) ( )

N

d n n n
n

L     


   

 

     
1 1

1 ( )( ) ( , ),
2

N N

m m n n m n
m n

k x x   
 

     (18) 

 
with constraints as 
 

 
1

( ) 0,
N

n n n
n

  


   

 

 10 ,n n
C
N

      

 

 
1
( ) ,

N

n n
n

c  


   (19) 

 
where C is the regularization constant, ( , )m nk X X  is the 
kernel function used to transform the data into high-
dimension feature space, and  can be assumed as tube 
size and is the approximation accuracy placed on the 
training data points, as shown in Figure 6. If the predicted 
values are within the tube, the loss associated with that 
point is assumed as zero. Else, the loss is considered as 
the magnitude of the difference between the predicted 
value and radius  of the tube. A large  can depreciate 
the approximation accuracy placed on training points. In 
this study, LIBSVM tool box in MATLAB was used to 
predict the travel time for the next instances25, and the 
kernel function used was a linear kernel of the form 
 
 ( , ) ( ) ,i j i jK x x x x coef    (20) 
 
where K is linear kernel function,  is width parameter. 
 
Implementation using SVR: Data for a period of one 
month were used in this study. Of the data collected, 18 
days data were used for training, 7 days data for cross-
validation and the remaining were used to test the per-
formance. Approximate entropy (ApEn) technique was 
 

 
 

Figure 6. -Tube for support vector regression. 

used to identify the optimum inputs (number of previous 
subsections). ApEn is a technique used to quantify the 
amount of regularity and unpredictability of fluctuations 
in data over time26. Figure 7 shows ApEn obtained for the 
training data with respect to number of previous trips. 
This value of number of previous trips to be used as input 
may depend on the time headway of the buses. Since 
ApEn is the measure of uncertainty, if the time headway 
decreases, which means that there are more trips within a 
small interval of time, it will become easy to predict the 
next trip because uncertainty may decrease. Thus, with 
smaller headways, the number of previous trips required 
to predict the next trip may also decrease. 
 It can be seen from Figure 7 that when previous six or 
more trips are used as input, the uncertainty in the predic-
tion is negligible. Hence, in the present study, data from 
previous six trips were used as input to predict the travel 
time of the next bus. Thus, input vector to SVR was a six-
dimensional matrix with previous six trips’ travel time, 
and output vector consisted of corresponding next trip 
travel time. Programs were written in MATLAB to gen-
erate input and output vectors for training, validation and 
testing. The four main unknown parameters of SVR, i.e. 
(Nu),  (width parameter), C (cost/penalty parameter), 
and coef (coefficient), were obtained by trial and error. 

Results and discussion 

The results obtained were compared with the Kalman 
based proposed method (MTDA) presented in the previ-
ous section for a one-week period. In addition to MAPE, 
mean absolute error (MAE) was also used for compari-
son, which was calculated as 
 

 
s TVM

1MAE .

N

i
X X

N






 (21) 

Comparison of performance across subsections  
(high and low variance) 

One of the main contributions of the present study is  
to identify a suitable prediction method for BTTP in 
 

 
 

Figure 7. ApEn versus number of previous trips. 
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Figure 8. a, Comparison of predicted and actual travel times for (a) a high variance section and (b) a low variance section. 
 

 
 

Figure 9. Comparison of deviation from actual travel time across subsections. 
 
sections having high variability. Hence, a comparison of 
the performance of the SVM method was made with the 
MTDA for selected trips for each subsection in terms of 
MAPE and MAE. Figure 8 a and b shows sample results, 
where the predicted travel times from SVM and MTDA 
are shown against the actual travel times for the represen-
tative high variance and low variance sections, namely 
subsections 46 and 19. It can be seen that both SVM and 
MTDA are able to capture the variations comparably for 
low variance sections with a MAPE of 11.25% and 
12.35%. On the other hand, in case of high variance sec-
tions, SVM was able to capture the variation better with 
an MAPE of 17.78% whereas MTDA had an error of 
26.39%. 

 Similar analyses were carried out for all sections and 
the results obtained are shown in Figure 8 in terms of de-
viation from actual travel time for both SVM and MTDA. 
It can be seen from Figure 9 that the performance of the 
proposed methods is comparable in low variance sec-
tions, whereas for high variance sections the error is 
much lower for SVM. 

Comparison of performance across trips  
(peak and off-peak trips) 

A comparison was also made for trips happening during 
different times of the day. Figure 10 a and b shows



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 111, NO. 4, 25 AUGUST 2016 708 

 
 

Figure 10. Predicted and observed travel times for (a) an off-peak trip and (b) a peak trip. 
 

 
 

Figure 11. Comparison of performance between support vector machines (SVM) and Kalman filtering technique (KFT) 
for various trips of a sample day. 

 

 

 
 

Figure 12. MAPE comparison between SVM and KFT for various 
days. 
 
 

sample comparisons of the predicted and measured travel 
times over 500 m subsections for sample off-peak and 
peak trips respectively. From the figure, it can be ob-
served that both SVM and MTDA perform comparably 
for off-peak trips, whereas for the peak trips SVM per-

forms better and is able to capture the travel time varia-
tions more accurately. It is well known that the variability 
in travel time for trips during peak hours is more than 
those during off-peak hours. This could be a reason for 
the difference in performance during peak hours. Figure 
11 shows the errors for all trips on a sample day, rein-
forcing the above result. Average performance compari-
son across days was also carried out. Figure 12 shows the 
results in terms of MAPE for the selected six days. It can 
be observed that SVM performs better than MTDA on an 
average scale as well. 

Comparison of performance across bus stop sections 

The proposed method was also evaluated by analysing the 
deviation of the actual travel time from the predicted
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Figure 13. Deviation from actual travel time at different bus stops. 
 
 
travel time (expressed as deviation from actual clock 
time), which is what users feel. Here, it is important to 
know the acceptable deviation from the user perspective. 
Earlier studies reported that 5 min prediction accuracy is 
acceptable for a bus with 1.5 h journey time5. In another 
study27, it was reported that the passengers will have 
 5 min tolerance if 88% of the predicted times are within 
5 min of the actual travel time. The TriMet Transit 
Tracker System in Portland reported that passengers have 
a tolerance of up to a minimum of 2 min and a maximum 
of 4.5 min of waiting time at bus stops28. Based on these, 
an accuracy of  5 min may be considered as the acceptable 
error limit from the user perspective. Figure 13 shows the 
deviation from actual travel time at different bus stops 
observed in this study. From this figure, it can be ob-
served that the deviation is up to  90 sec and  195 sec 
at various bus stops along the 19B bus route for SVM and 
MTDA respectively. It can also be seen that the SVM 
method is able to predict the arrival time more efficiently 
than MTDA, and is within the tolerance limit. 

Field implementation 

The present study focuses on the development of a pre-
diction method that can form the basis of a traveller  
information system, which will be useful to passengers. 
The predicted travel/arrival times can be shared with the 
passengers on real-time basis, and users can get the in-
formation through display boards placed at bus stops, in-
side the bus itself or through web portals or mobile 
applications. 
 A commuter can potentially check the arrival details 
from the comfort of his/her office or home through the 
website, and can reach the bus stop close to the predicted 
arrival time. A Google Maps-based website has been  
developed (Figure 14), which can provide such informa-
tion. The same can be provided through mobile applica-
tions or display boards for access them from bus stops or 
en-route. Such applications can be interactive and provide 

the users with the current location of the bus and its ex-
pected arrival time at any chosen bus stop. 

Conclusion and scope for future work 

The heterogeneity and lack of lane discipline makes  
Indian traffic highly varying and hence prediction methods 
that have hitherto been developed for homogeneous and 
lane-disciplined traffic conditions may not be applicable 
here. The present study is an attempt at developing a real-
time bus-arrival prediction system that pays special atten-
tion to this high variance. The high variability was first 
addressed by explicitly incorporating mean and variance 
into an existing time discretization-based model. How-
ever, improvement in performance was not significant. 
Hence, a prediction methodology using SVR with linear 
kernel function in LIBSVM was developed and was  
implemented in MATLAB. ApEn technique was used to 
arrive at the optimum amount of data required to predict 
the next trip, and it was observed that data from previous 
six trips optimally predict the following trip. 
 Analysis was carried out using GPS data collected 
from buses running along route 19B in Chennai. Results 
showed comparable performance by SVM and the pro-
posed MTDA for trips during off-peak hours. However, 
for trips during peak hours, SVM was able to capture the 
travel time variations better than MTDA. Overall, the 
proposed method showed better performance than MTDA 
using KFT. 
 The main challenge in using this approach is the  
requirement of a sufficiently large dataset and the need to 
separately tune the parameters for each section. The pro-
posed method can be implemented in real-time for  
advanced public transportation systems applications on  
a large scale. The predicted travel times can be comm- 
unicated to travellers through variable message sign 
boards or kiosks at bus stops, as well as through  
websites or mobile applications for pre-trip and en-route 
planning. 
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Figure 14. Bus stop information dissemination unit with map display. 
 

 
 The failure of the model-based approach with explicit 
error incorporation in improving prediction performance 
may be attributed to the fact that it used a simple linear 
dynamic model, which may not be capable of capturing 
the characteristics of the system well under such scenar-
ios. The prediction performance may improve if an ad-
vanced nonlinear model is used, which can characterize 
the system more accurately, instead of the linear model 
used in this study. The performance of SVM method may 
be further improved by explicitly considering traffic-
related variables such as driver characteristics (age,  
vision), vehicular characteristics (kilometres travelled, 
engine characteristics), weather information, etc. 
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