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A correction for truncation errors associated with  
implicit finite difference method (FDM) of the 
groundwater transport equation with reaction term, 
which is generally used in groundwater transport 
models, is developed here from a Taylor series analy-
sis. An application example is formulated to illustrate 
the effect of truncation errors on the numerical solu-
tion of implicit FDM. The study compares the effect of 
truncation error on numerical model accuracy of im-
plicit FDM and explicit FDM for groundwater trans-
port equation with reaction term. The explicit FDM 
constitutes large deviation from analytical solution 
without truncation error correction. The relative  
error analysis reveals that error reduces from 75% to 
30% after truncation error correction. Therefore, we 
can conclude that numerical truncation error correc-
tion has significant impact on accuracy of groun-
dwater transport models based on explicit FDM than 
those based on implicit FDM. 
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THE credible study of solute transport/advection–dispersion 
processes in hydrogeological systems has stimulated the 
development of various numerical methods for ground-
water transport equations (advection dispersion equation; 
ADE). However, requirements regarding the accuracy 
and efficiency for these methods are constantly becoming 
stricter and therefore there is a still need to find better 
numerical schemes1. Therefore, understanding of theo-
retical truncation error is necessary, when concrete nu-
merical schemes are applied. 
 The ADE of a solute transport is approximated by  
discretization, which generally suffers from the presence 
of truncation errors in the predictions2. The most recog-
nized form of truncation error in the ADE is the numeri-
cal dispersion error3. This was first quantified as a 
second-order error through the analysis of truncated Tay-
lor series approximation of a simple, explicit finite dif-

ference solution of the one-dimensional transport 
equation4,5. Although for this type of transport model, the 
truncation error results only from numerical dispersion. 
But in general form of ADE with reaction term, trunca-
tion error arises from other physical parameter terms also. 
 Many of the previous studies have considered the  
effect of numerical dispersion errors on the solution of 
ADE6–10. The previous studies presented a numerical 
model for chemical species (phosphorus) transport in 
soils and groundwater with two consecutive reactions9. 
The studies addressed the effect of numerical dispersion 
in the explicit finite difference method (FDM) despite the 
fact that the effects of zero- and first-order truncation  
errors were ignored. Later, these truncation errors in the 
ADE with reaction were quantified11,12. An explicit FDM 
was presented to calculate unsteady one-dimensional 
ADE and volatilization of toxic organic compounds in 
soils based on the formulation of an integrated mass flux 
approach7. In addition, numerical formulations for trunca-
tion error were extended for two-dimensional ADE by 
applying Taylor series expansion13. 
 The previous studies were mainly focused on applica-
tion of estimated numerical truncation error on explicit 
FDM and Crank–Nicolson method. They did not present 
any application related to truncation error analysis of  
implicit FDM. Therefore, the present study emphasizes 
on the numerical truncation error formulation for  
implicit FDM, its applications and implications on the 
accuracy of numerical solution of groundwater transport 
models. 

Materials and methods 

The partial differential equation describing one-dimen-
sional transport of solute through homogeneous medium 
is written as 
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where C is the solute concentration [ML–3], t the time [T], 
x the horizontal coordinate [L], U the Darcy flux [LT–1], 
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D is the physical dispersion coefficient [L2 T–1] and k is 
the reaction coefficient [T–1]. 
 The present study applies forward time and implicit 
centred FDM in space, and eq. (1) can be approximated 
as 
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where the superscript n refers to time level, the subscript 
i refers to the node point, x is the spatial increment of 
grid [L] and t is the temporal increment [T]. Here, we 
consider uniform time and space increment. 
 A Taylor series expansion of C about any grid point is 
used to determine the form of the truncation errors4,5.  
If the third- and higher-order spatial derivatives are  
neglected, then the following formulation is obtained 
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The second and higher-order temporal derivatives of C 
are written in terms of spatial derivatives using the dif-
ferentiated form of eq. (1) as 
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 (6) 
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To express eq. (6) only in spatial terms, we eliminate the 
temporal terms. For this, substitute eq. (1) into eq. (6) as 
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Neglect the higher-order derivative terms 
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Similarly, the higher-order temporal derivative can be 
formulated as 
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From eqs (9)–(12), it can write a general formula, i.e. for 
m  2 
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Therefore, eq. (3) can be written as 
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Substituting eq. (14) in eqs (4) and (5) and neglecting  
the higher-order spatial derivative yields the following  
expressions for 1
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Substituting eqs (14)–(16) into eq. (2), and rearranging 
yields the following equation 
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Comparing eq. (17) and the original governing equation 
shows that even in implicit method discretization intro-
duces three forms of truncation error. It can be formu-
lated as given below. 

Derivation of truncation error formula 

Second-order truncation error or numerical dispersion 
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First-order truncation error or numerical water velocity 
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Zero-order truncation error or numerical reaction coeffi-
cient 
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In order to eliminate the truncation error due to numerical 
dispersion, numerical velocity and numerical reaction coef-
ficient, the derived formula for these terms is subtracted 
from the physical dispersion, velocity and reaction coeffi-
cient. New terms are substituted in eq. (1) as 
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where D*, U* and k* denote the truncation error cor-
rected forms. 
 
 D* = D – Dnum, (22) 
 
 U* = U – Unum, (23) 
 
 k* = k – knum.. (24) 
 

Results and discussion 

In order to study the effect of error due to numerical trun-
cation (numerical dispersion, numerical velocity and  
numerical reaction coefficient) on forward time and  
implicit centred FDM, we compared the numerical simu-
lation of truncation error-corrected and non-corrected 
truncation error scheme with the analytical solution 
adopted from the previous studies12,14. The analytical  
solution for solute transport equation for the following  
initial and boundary conditions, i.e. 
 
 , 0, 0;iC C t x    
 
 0 , 0, 0;C C t x    
 
 0, 0, ;C t x    
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where v is calculated as 
 
 2 0.5( 4 ) .U kD    (26) 
 
Also, the performance of the model is confirmed by esti-
mating relative error (RE) as 
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where Cnum and Cana are numerical and analytical solute 
concentrations respectively. 
 In order to show that implicit centred FDM can yield a 
solution which is close to the analytical solution by  
applying numerical error terms in calculation, we provide 
an application example with the following input para-
meters. The numerical problem is composed of a semi-

infinite column, where U = 10 cm/h; D = 100 cm2/h; 
k = 0.5 h–1; incoming concentration = 1000 mg/l and  
initial concentration = 0.0 mg/l. Here, a space increment 
of 20 cm and temporal increment of 1.0 h is applied  
(Figure 1). We compare the numerical solution with the 
analytical solution at time of 24 h. 
 Figures 2–4 show numerical results. Figure 2 shows the 
results with and without correction of numerical error for 
implicit centred finite difference scheme. The numerical  
results showed a close match with the analytical solution 
irrespective of the numerical truncation correction. Also, 
it should be pointed out that as the depth increases, the 
corrected numerical solution is closer to the analytical  
solution compared to solution without correction. How-
ever, numerical solution without correction from implicit 
scheme does not show a significant deviation from the 
analytical solution. A comparison between numerical re-
sult of explicit scheme and analytical solution shows that 
the numerical solution without numerical error correction 
deviates comparatively larger from analytical solution 
compared to implicit FDM (Figure 3). The numerical  
solution with error correction matches well with the analyti-
cal solution in case of explicit scheme. This indicates the 
smallest truncation error associated with numerical solu-
tion of implicit centred FDM compared to explicit FDM 
(Figure 3). Therefore, Figures 2 and 3 illustrates that  
explicit FDM improves by application of numerical error 
term, while implicit FDM shows less improvement in the 
accuracy of numerical solution. 
 Moreover, the study illustrates the effect of increase  
in the number of terms used in the series (m) on solution 
accuracy in the case of implicit FDM. The number of 
terms used in the series (m) controls the error between 
numerical solution and analytical solution12. The trunca-
tion error can be minimized by increase in the number of 
terms in the series. But at certain m value, the numerical 
solution fully converges with the analytical solution (Fig-
ure 4). Therefore, increase in m value after this value 
cannot contribute to significant improvement in the accu-
racy of the numerical result12. 
 The study estimated the relative error for truncation  
error corrected and non-corrected numerical solution of 
different FDMs by applying eq. (27). Our results reveal 
that numerical error decreases drastically by removal of 
truncation error from FDM (Figure 5). The maximum  
error limit is reduced from 75% to 30% after truncation 
error correction (Figure 5). Therefore, it is significant to 
study the truncation error correction of FDM because the 
groundwater model such as MT3D applies FDM to solve 
the numerical problems. Application of truncation error 
correction term can reduce error from the numerical  
results of these FDM. The present study could shed light 
on the truncation error due to the advection term, disper-
sion and reaction term. 
 According to the present study, it is clear that numeri-
cal truncation error correction has a significant impact on 
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Figure 1. Numerical experimental set-up and initial and boundary conditions. 
 
 

 
 

Figure 2. Comparison of numerical solution with correction and 
without correction in the case of implicit centred finite difference 
scheme. 

 
 

 
 

Figure 3. Comparison of numerical solution with and without correc-
tion in the case of explicit centred finite difference scheme. 

 
 

Figure 4. Comparison of the effect of number of terms in the series 
on numerical solution accuracy in the case of implicit centred finite dif-
ference scheme. 

 

 
 

Figure 5. Relative error estimated before and after truncation error 
correction for explicit centred finite difference scheme. 
 
 

improving solution accuracy of the FDM, especially in 
the case of explicit FDM. The numerical solution without 
error correction shows significant deviation from the 
analytical solution in case of explicit finite difference 

scheme. The implicit FDM shows less deviation from  
the analytical solution, even without error correction. 
Therefore, numerical error correction is most effective for 
explicit FDM than implicit FDM. 
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Conclusion 

A simple modification or subtraction of the numerical 
truncation error term dramatically increases the solution 
accuracy of FDM. The present study compared the solu-
tion accuracy of implicit FDM with and without trunca-
tion error corrections. The results show that truncation 
error in implicit FDM is small. The study also compares 
the numerical solution of explicit centred FDM. It showed 
that truncation error correction can significantly improve 
the solution accuracy of explicit FDM. Also, the study 
shows that increase in the number of terms in series after 
a certain value cannot improve the numerical solution  
accuracy. In addition, the present study estimated the RE 
associated with explicit centred FDM before and after 
removal of truncation error. The results reveal that trun-
cation error correction can improve the solution accuracy 
of explicit FDM significantly, which is obvious from RE 
estimation too. The observation of results from two FDM 
(i.e. explicit and implicit centred) shows that the applica-
tion of truncation error formula is most effective on  
explicit FDM compared to implicit FDM. 
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