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Nonlinear nature of Richards’ equation has attracted 
attention for providing analytical and numerical  
solution for this equation. In the present study, differen-
tial quadrature method (DQM) is used for presenting 
a numerical solution for one-dimensional Richards’ 
equation in mixed and h-based forms, where pressure 
head is the dependent variable. Our results show that 
DQM requires less computational effort compared to 
finite difference technique, and can be applied for 
solving other similar nonlinear equations. 
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AFTER an irrigation or rainfall, water flow tends to infil-
trate from the soil surface into the soil due to gravity and 
reaches the water table. For this, water flow should infil-
trate into the unsaturated zone. The flow in unsaturated 
zone is described by Richards’ equation1, which is a non-
linear partial differential and parabolic equation. Such an 
equation in one-dimensional form is described as follows: 
 

 h-based form: ( )( ) ( ) ,h h K hC h K h
t z z z

          
 (1) 

 

 -based form: ( )( ) ,DD
t z z z
  


          

 (2) 

 

 Mixed-base form: ( )( ) ,h K hK h
t z z z
          

 (3) 

 
where h is the pressure head,  the water content, C(h) 
the specific storage coefficient, K(h) the unsaturated  
hydraulic conductivity, D( ) the diffusivity coefficient, z 
the vertical datum (positive downward) and t is the time. 
The nonlinear nature of Richards’ equation has aroused 
curiosity to solve it analytically and numerically. Due to 

the complexity of water flow into the unsaturated zone, 
and lack of a complete analytical solution to check the 
flow in the zone, the use of computational and numerical 
models to solve the problems of unsaturated flow has 
grown substantially in recent decades; subsurface flows 
are still considered to be one of the most important topics 
in hydrology. 
 Unsaturated flow modelling has been conducted by dif-
ferent researchers using numerical and analytical  
methods, each of which has its own advantages and dis-
advantages. Varado et al.2 assessed an efficient numerical 
solution for the one-dimensional Richards’ equation on 
bare soil. Tracy3 derived analytic solutions of Richards’ 
equation for three-dimensional unsaturated flow for a 
box-shaped soil sample under simple piece-constant spe-
cified head boundary condition. Menziani et al.4 studied 
the analytic solution of the linearized Richards’ equation 
for discrete arbitrary initial and boundary conditions. 
Shahraiyni and Ashtiani5 compared finite difference (FD) 
schemes for water flow in unsaturated soils. The aim of 
their study was to find an appropriate implicit numerical 
solution for head-based Richards’ equation using some of 
the well-known FD schemes, including Crank Nicolson 
and Runge-Kutta. He and Ren6 examined two-dimensional 
solution of Richards’ equation for heterogeneous soil  
using finite elements, and used a special method in their 
solution for the effective use of the FD scheme. Kuraz  
et al.7 worked on a solution of Richards’ equation for 
classical and dual porosity using adaptive time discretiza-
tion. Juncu et al.8 investigated two-dimensional numeri-
cal solution of Richards’ equation using nonlinear 
multigrid method, and considering dimensionless water 
content as the dependent variable. They used Newton and 
Picard iteration methods for the solution. An exponential 
time-integration method was used by Carr et al.9 for solv-
ing one-dimensional Richards’ equation. An iterative al-
ternating direction implicit (IADI) algorithm for solving 
the equations of saturated or unsaturated flow was pro-
posed by An et al.10. This algorithm is more stable than 
the IADI, and can be used for three-dimensional model-
ling. Huang and Wu11 proposed analytic solutions to one-
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dimensional and vertical water infiltration in saturated or 
unsaturated soils that can consider the variation of rain-
fall with time. In their model, moisture content and per-
meability coefficient were assumed to be exponential 
functions of the pressure head, and diffusivity was con-
sidered to be constant; however, only a few analytical so-
lutions have been proposed for Richards’ equation due to 
its nonlinear nature. Thus, many numerical solutions have 
been suggested for Richards’ equation by several research-
ers. Ginting12 proposed a one-dimensional solution of  
Richards’ equation using time-integration techniques. He 
employed the models of Haverkamp et al.13 and Van  
Genuchten14 as well as an exponential model. Zhu et al.15 

developed a scheme for coupled numerical simulation of 
unsaturated–saturated water flow at the regional scale. In 
their study, saturated and unsaturated zones were implic-
itly coupled in space and time through the vertical flow 
between unsaturated soil columns and saturated aquifers 
in it with pressure heads in the unsaturated and saturated 
zones were integrated in a single matrix equation. Misiats 
and Lipnikov16 suggested a second-order accurate mono-
tone finite volume scheme for Richard’s equation. Paulus 
et al.17 proposed an original solution decoupling the 3D 
equation into 1D vertical equations and a 2D depth-
integrated horizontal equation. The aim of their study was 
to consider vertical columns of infiltration coupled with 
lateral transfer of mass through the boundary conditions. 
Different numerical models have been proposed for mod-
elling water flow in unsaturated–saturated zones18–29. 
Here we use differential quadrature method (DQM) for 
solving problems of water flow in unsaturated zones. In 
this article, a numerical solution for nonlinear one-
dimensional Richards’ equation is suggested where pres-
sure head is the dependent variable, and the mixed form 
of Richards’ equation is investigated using DQM. 

Materials and methods 

Differential quadrature method 

DQM is a numerical method introduced by Bellman  
et al.30 for solving partial differential equations. Accord-
ing to them, the first-order and second-order derivatives 
are obtained as follows 
 

 
1
 For  , 1, 2( ) , ...,( ), ,

i

n

x i ij j
j

x x fff x a i j n
x

x





  
   (4) 

 

 
2

2
1
 For , 1,2,( )  ( ) .,, .. ,

i

n

xx i ix jx j
j

f x b i jf f nx
x 




  


  (5) 

 
where n is the number of points, xi the coordinates of 
point i, and aij and bij are the first- and second-order 
weighting coefficients at point i for the first-order and 
second-order derivatives respectively. It should be noted 

that the determinant of the weighting coefficients and 
choice of sampling points are important for the accuracy 
of the DQ solution. Several methods have been proposed 
for determining weighting coefficients. Shu31 described 
weighting coefficients for the first- and second-order  
derivatives as 
 
First-order derivatives 
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where M(1) (xi) and M(1)(xj) are defined as 
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Second-order derivatives 
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The location of grid points has a major effect on the con-
vergence and accuracy of the numerical results. Equally 
spaced grid points often yield poor results and may  
destroy the numerical scheme. The position of each grid 
point in any direction x, y and z was calculated using 
Chebyshev–Gauss–Lobatto method 
 

  11 1 cos , 1,2,..., ,
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z
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 (12) 

 
where L is the length of the computational domain and N 
is the number of points. 

Mixed-form of one-dimensional Richards’ equation 

The general form of this equation is based on eq. (3), 
which can be rewritten as 
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 (13) 
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Table 1. Computing K(h)/z using DQ and FD methods 

Differential quadrature method Finite difference method 
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  The first-order backward FD approximation for the last node  
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Discretizing time derivatives 
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where 1n

i
  and n

i  denote the value of  at moments n 
and n + 1. 
 In the present study, discretization of the second  
spatial derivatives is performed by DQM, because of its 
advantages compared with other methods such as finite 
element method (FEM), FD and finite volume method. 
Nevertheless, discretization of time derivative is esti-
mated using a FD approximation, as it is a common prac-
tice for other numerical solution methods (e.g. FEM, 
control volume method). Here also an implicit method is 
employed to solve the time-dependent differential equa-
tion; therefore, the solution can be considered uncondi-
tionally stable. 

Discretizing K(h)/z 

DQM can be used directly for discretization of K(h)/z 
(Table 1), but we may come across complex functions 
that prevent convergence using DQM. So, in this case, we 
can use the FD method (Table 1). 

Discretizing first- and second-order spatial  
derivatives 
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By substituting eqs (14)–(16) as well as data presented in 
Table 1 into eq. (13), we get 
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where i and K refer to positions of the points and N is the 
number of points in the computational domain. According 
to eq. (17) there are two unknowns, including 1n

i
  and 

1n
kh  . For solving this problem, Taylor series expansion 

of  is used with respect to h. 
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 (18) 
 

where HOT represents the higher order terms, n and n + 1 
denote the time level, while m and m + 1 represent the  
iteration level. 

Computing specific storage coefficient 

d/dh = C(h) can be computed using standard chord slope 
(SCS) approximation32 and tangent approximation. In 
tangent approximation, based on existence of an analyti-
cal relationship between  and h for different soil types, 
we take the derivates of  (h). In the SCS method, a FD 
approximation is made for d/dh, where for each trial- 
and error stage we have 
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where 1n

i
  and n

i  are the values of moisture content at 
times n + 1 and n. 
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 Substituting eqs (18) and (19) into eq. (17), the final 
discretization form of eq. (3) using DQM is written as 
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For discretizing ( )/K h z   we use Table 1. 

Head-based form of one-dimensional Richards’  
equation 

The overall form of Richards’ equation where pressure 
head is considered as the dependent variable is based on 
eq. (1), which can be rewritten as 
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If we use eqs (15)–(19), and Table 1 for discretizing the 
other terms of eq. (21), we get 
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Rewriting eq. (23) gives 
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Equation (24) is the discretized form of eq. (21) using 
DQM, and can be solved by the algorithm presented in 
the next section. 

Solution algorithm 

First, let assume that the nonlinear system of equations in 
this problem is 
 
 11 1

1 1[ ( ) ] { } { } ,n n
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n
NhM Yh 
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where M is a N  N matrix of coefficients and its value 
depends on h; which is the matrix of unknowns contain-
ing unknown h values and a N  1 one-dimensional  
column matrix; Y represents a N  1 one-dimensional 
column matrix. Each standard numerical model such as 
the Newton–Raphson model can be used to solve eq. 
(24). One of the most important advantages of DQM 
compared to other methods is that we can obtain the same 
result using a large network with fewer points. For solv-
ing such problems, iteration-based methods can be used 
instead of costly computational methods like the  
Newton–Raphson method. In the present study, trial and 
error method is used 
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The hardness matrix ([M]) in DQM is not always a pivot 
matrix, as this is not the case in Galerkin FEM, finite  
volume and FD (pivot: the size of the member on the 
main diagonal position, is greater than all members in the 
same column and row). This fact makes the calculations a 
little bit more difficult; however, this difficulty can be 
overcome by choosing a suitable time step. 
 For numerically solving eq. (25), first the number of 
points should be selected and their location (node distri-
bution in the computational domain) should be deter-
mined using eq. (12). By having the location of nodal 
points, we can compute aij and bij by using the PDQ  
method. Since choosing the initial guess has a major  
effect on the convergence of the iterative methods for 
solving the nonlinear system of equations, in this study, 
the initial condition of the problem is chosen as the initial 
guess (h0). Then, 1, 1n m

ih    value is measured using itera-
tion according to eq. (27) 
 

 1, 1 1, 1 1,{ } [ ( ) ] { }.n m n m n mh M h h      (27) 
 
The iteration continues until the difference between two 
consecutive iterations is less than a specified error  
value () 
 

 1abs(|| || || ||) .m mh h     (28) 
 
In equation (28),  = 0.5  10–6. 
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Table 2. Values of the required parameters for solving examples 1 and 2 

Example  s r   m n A ks  
 

Example 1 0.287 0.075 1.611  106 3.96 – – 1.175  106 0.00944 4.74 
Example 2  0.368 0.102 0.335 – 0.5 2 – 0.00922 – 

 

 
 

Figure 1. Numerical solution for the first example using differential quadrature method (DQM) with standard chord 
slope (SCS) approximation: a, h-based form; b, mixed form (N = 25, t = 360 s). 

 
 

 
 

Figure 2. Numerical solution for the first example using DQM with tangent approximation: a, h-based form; b, mixed 
form (N = 25, t = 360 s) 

 
 The error in our calculations has an absolutely descend-
ing trend; therefore, a lower value of error is achievable 
in our calculations. However, this criterion is two orders 
of magnitude smaller than the value which cause the  
results and graphs to be independent of the error value. 

Numerical examples 

In this study, we solve two numerical examples which 
show one-dimensional water infiltration. The first exam-
ple was presented by Haverkamp et al.13, where boundary 

condition was –61.5 cm for downstream and –20.7 cm for 
upstream and initial condition was –61.5 cm. They pre-
sented eqs (29) and (30) for determining the relationship 
between K(h) and (h) 
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Figure 3. Comparison of finite difference (FD) and DQM results for the first example in h-based form with (a) SCS  
approximation and (b) tangent approximation. 

 

 
 

Figure 4. Comparison of FD and DQM results for the first example in 
mixed form with tangent approximation. 
 
The second example given by Van Genuchten14 was an 
unsaturated, homogeneous soil column. Downstream 
boundary condition for this soil was –1000 cm, and  
upstream boundary condition was –75 cm. In addition, 
the initial condition was –1000 cm. Van Genuchten14  
presented eqs (31) and (32) for defining the relationship 
between the parameters K(h) and (h) 
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Figure 5. Comparison of SCS and tangent approximations results  
using DQM for solving the first example in mixed form of Richards’ 
equation (t = 360 s, N = 25). 
 
 
where , , , m, n and A are dimensionless fitting para-
meters determined for different soil types, ks denotes the 
saturated hydraulic conductivity, s (m3/m3) represents 
moisture content of saturated soil, and r (m3/m3) is the 
residual moisture content. Table 2 presents data required 
for this soil. 

Results and discussion 

First example 

As mentioned above, the effective factors with regard  
to unsaturated zone are parameters such as hydraulic
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Figure 6. Numerical solution for the second example using DQM with SCS approximation: a, h-based form; b, mixed 
form (N = 25, t = 360 s). 

 
 
 

 
 

Figure 7. Numerical solution for the second example using DQM with tangent approximation: a, h-based form;  
b, mixed form (N = 25, t = 360 s). 

 
 
conductivity, specific storage coefficient and moisture 
content. In the first example, data of which were pre-
sented by Bellman et al.30, the problem was solved at dif-
ferent time steps, and SCS and tangent approximation 
were used for computing specific storage coefficient. The 
results obtained were compared with those of FD method. 
Also in this example, the term ( )/K h z   was discretized 
using DQ. 
 Figure 1 shows results of the numerical solution for the 
first example in mixed and h-based forms of Richards’ 
equation using SCS approximation at different time  
steps for t = 360 s; it indicates good coincident results. 
Figure 2 illustrates results of the first example using  
tangent approximation in mixed and h-based forms at  
different time steps for t = 360 s; the results are close  

together at different time steps. Figure 3 compares  
DQM with fully implicit FD method for h-based  
form of Richards’ equation. In Figure 3 a, the results of 
DQM and FD method are compared, where SCS ap-
proximation is used for computing specific storage coef-
ficient. Figure 3 b shows a comparison of results using 
tangent approximation for computing specific storage co-
efficient. The number of points in computational domain 
in FD and DQM is considered as 40 and 25 respectively. 
The results presented in Figure 3 are in t = 10 s for 
t = 360 s. 
 Figure 4 compares the results of DQM and FD method 
using tangent approximation and in mixed form of  
Richards’ equation at t = 10 s for t = 360 s. As can be 
seen, the results of both methods almost completely  
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coincide with each other. The number of points in FD and 
DQM is considered as 40 and 25 respectively. Figure 5 
compares the results of SCS approximation with tangent 
approximation in mixed form of Richards’ equation in 
t = 10 s for t = 360 s. As can be seen, the results of both 
methods completely coincide with each other. So, it can 
be concluded that the results of SCS and tangent ap-
proximation are close to each other, and both methods 
(DQ and FD) can be used. 
 
 

 
 

Figure 8. Comparison of SCS and tangent approximations results  
using DQM for solving the second example in mixed form of Richards’ 
equation (t = 360 s, N = 25). 

 
 
 

 
 

Figure 9. Comparison of FD and DQM results for the first example in 
mixed form with tangent approximation. 

Second example 

In the second example we use complex functions (eqs 
(31) and (32)) to determine the relationship between the 
parameters of K(h) and (h) with respect to h. In this 
case, we may not achieve the necessary convergence for 
computing K(h)/z using DQM. To solve this problem, 
FD method presented in Table 1 can be used for computa-
tion. Figure 6 shows results of solving the second exam-
ple using DQM with SCS approximation for both h-based 
and mixed forms of Richards’ equation at different time 
steps; the results obtained are coincident (different values 
of Delta time steps were set according to the previous 
studies, e.g. Krabbenhoft25). Figure 7 shows DQM results 
with tangent approximation for both h-based and mixed 
forms. Since absolute error for solving the problems in 
this study is equivalent to 0.5  10–6, the results are coinci-
dent at different time steps. Figure 8 depicts results while 
comparing SCS and tangent approximations for a mixed 
form of Richards’ equation in dt = 144 s for t = 86,400 s. 
The results of both methods are close to each other, such 
that the beginning and end of the curve of both methods 
coincide with each other. Figure 9 shows a comparison of 
results using DQM and FD method for solving the second 
example where tangent approximation was used for com-
puting specific storage coefficient. The numbers of points 
in FD and DQM are considered as 40 and 25 respectively. 
The results are found to coincide with each other. 

Conclusion 

In this study, first we discussed unsaturated zone and its 
importance as well as the equations of this zone known as 
Richards’ equations. Then DQM method was introduced 
as an efficient method for solving differential equations, 
and also one which provides good results using less num-
ber of points. Then, two well-known examples given by 
Haverkamp et al.13 and Van Genuchten14 were presented 
for numerical solution of nonlinear Richards’ equations. 
Since weighting coefficients and node distribution in 
computational domain are important factors for the accu-
racy of numerical model of DQ, selecting these two  
factors is of importance. Some of the results obtained by 
DQM were compared with those obtained by fully im-
plicit FD method. The results confirmed the accuracy  
of DQM. Thus DQM is a reliable method for solving 
such problems and it requires less computational effort  
compared to the FD technique. 
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