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This study evaluates the impacts of climate change on 
maize yields in Tamil Nadu, and assesses the efficacy 
of adaptation strategies, using a novel multi-climate, 
multi-crop model approach based on AgMIP Proto-
cols (www.agmip.org). While the climate models dis-
played consistent changes to rainfall and temperature, 
substantial uncertainty exists between the different 
climate-crop model responses that warrant further 
study. Adaptation strategies proved beneficial under a 
current climate context, but showed diminished effi-
cacy under future climate conditions. We recommend 
that future work focus on identifying the main sources 
of climate-crop model uncertainty, and that additional 
work may focus on more transformative adaptation 
measures.  
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Introduction 

INDIA’S agricultural and economic well-being has histori-
cally been tied to the variability and strength of its mon-
soonal climate. In particular, the growing seasons in 
Tamil Nadu, India are dependent upon both the South-
west Monsoon (SWM) phase occurring between June–
September, and the Northeast Monsoon (NEM) phase, 
which brings much of the annual rainfall between Octo-
ber–January and supplies nearly 42% of Tamil Nadu’s 
agricultural production1,2. Both monsoonal phases depend 
on many factors and drivers of regional variability, such 
as: ENSO modulations, Indo-Pacific sea surface tempera-
tures, Himalayan snowpack, and land surface changes3. 
Accurately simulating all components of the large–scale 
annual monsoon circulation has proven to be a difficult 
task for global climate models (GCMs), which show 
strong biases in the spatial and temporal distributions, the 

amount of monsoonal rainfall, the interannual variation in 
the strength of the monsoon heat lows, and the strength 
and geographic location of the major circulation  
features4–6. 
 Generally, however, CMIP5 GCMs show increased 
mean temperatures across much of the world, even under 
less severe representative concentration pathways, and 
this finding extends over much of the Indian peninsula7,8. 
Other findings emerging from the Intergovernmental 
Panel on Climate Change Fifth Assessment Report indi-
cate an intensification of the hydrological cycles such 
that ‘wet’ areas may receive more precipitation, a result 
salient to India’s monsoonal climate, although the inter-
annual and intra-seasonal variability of that rainfall is less 
certain9. Agricultural production must therefore be resil-
ient to rising temperatures, and also to changing rainfall 
amounts, patterns, and variability10. Farmers may adopt 
various ‘adaptation’ management strategies that allow 
them to preserve their crops in the face of rising tempera-
tures, or take advantage of increase in precipitation.  
Investments in adaptation options could prove significant, 
and so there is a need to better understand and character-
ize the nature of climate change impacts on regional crop 
yields, and how these vary across assessment tools and 
methods. Seasonal and sub-seasonal forecasts can aid 
farmers in adjusting their management practices on a 
short-term notice, but larger infrastructural projects  
require more time to plan and budget, and therefore chara-
cterizing the climate–agricultural regional impacts on 
longer timescales is also required. In order to consider 
what these adaptation strategies should be, stakeholders 
at multiple levels (e.g. district, state, federal etc.) require 
projections of crop response to potential future climate 
conditions, and a characterization of the uncertainty that 
surrounds these projections. 
 A multi-model intercomparison can serve these needs, 
and can provide a comprehensive assessment of crop  
response to climate change across the world and in the 
most vulnerable regions, creating a spatial analysis that 
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can allow stakeholders to employ a range of strategies 
that are regionally tailored, but fulfill global objectives  
of building agro-ecosystem resiliency. The Agricultural 
Model Intercomparison and Improvement Project  
(AgMIP) (www.agmip.org) has created a set of protocols 
and methods to conduct regional integrated assessments 
(RIAs) of the impact of climate change on agriculture and 
farmer livelihoods. These RIAs comprised a climate and 
crop model intercomparison at a regional scale, with pilot 
projects being conducted in Sub-Saharan Africa and 
South Asia11. These protocols allow the RIA teams to as-
semble regional climate information for applications and 
identify sources of uncertainty; create future climate sce-
narios from a suite of CMIP5 GCMs, and compare the 
extent of climatic changes across these GCMs; utilize the 
climate change information in crop response simulations 
using multiple crop models; assess the general crop  
responses and uncertainty from these multi-model com-
parisons; and devise adaptation strategies to help stake-
holders insulate themselves from losses due to climate 
change. The AgMIP protocols also extend to an agro-
economic assessment in which the relative yield changes 
from the climate–crop intercomparisons are used to un-
derstand the socio-economic gains and losses across a 
distribution of farmers in targeted districts2,12. Tamil 
Nadu comprises part of the ‘South India’ AgMIP RIA, 
and the results shown here are preliminary assessments 
from this ongoing work. To focus on this study, we util-
ize and further develop the AgMIP climate-crop assess-
ment protocols only to better understand the impact of 
climate change on rainfed maize yields in the Coimbatore 
District11 (Figure 1). To do this, we study the following 
key questions: 
 
 How do two crop models differ in their simulation of 

baseline maize yields across a heterogeneous distribu-
tion of farms and management? 

 Using these two crop models, are there robust changes 
in crop yields across these farms due to projected 
mean climatic changes? 

 What is the efficacy of various adaptation strategies 
under current climate conditions, and how does this 
change under future climatic conditions?  

 
We also characterize some of the uncertainties in both the 
climate projections and crop response across the models 
used. This is among the first publications to discuss the 
preliminary findings and results of the AgMIP RIAs, 
which have, for the first time, coordinated an effort to 
study the impacts of climate change on agriculture using 
multiple climate and crop models11. To our knowledge, 
this is also among the first studies to utilize this multi-
model approach to assess maize production in Tamil Nadu, 
and to present the uncertainties introduced by these models. 
 Next section details our methods: our selection of a 
subset of GCMs; our application of future climate change 

conditions; crop model information and calibration; and 
site selection. Our results for maize yields in the Coimba-
tore District, and includes our baseline climate–crop 
analysis; the application of various adaptation strategies 
under baseline conditions; the yield responses to future 
climate changes; and the application of the selected adap-
tation options under future climate conditions are pre-
sented later. Also we discuss the important findings and 
relationships identified for yields under baseline and fu-
ture climate conditions, including the impacts and effi-
cacy of the adaptation options tested. We also discuss 
sources of uncertainty and potential differences between 
the models, as well as limitations for identifying one 
model for use in climate–agriculture impacts assessments 
in this region. We conclude with a summary of findings 
and note the avenues for on-going and future work. 

Methods and the AgMIP climate-crop protocols 

Crop modelling methods and calibration  

Agricultural scientists have extensively utilized process-
based crop models as decision support tools to evaluate 
the impact of inter-annual climate variability and/or cli-
mate change on crop production13–15. Crop simulation 
models require high-quality data on local conditions, such 
as climate and weather, soil profiles, crop varieties  
and crop management details. Such data were obtained in 
the study region from different sources, inclusive of re-
cords from Tamil Nadu Agricultural University, adminis-
tered farm household surveys, and the Department of 
Agriculture. The two crop models employed in this study 
 

 
 

Figure 1. Map of AgMIP South India region, and the specific study 
district in Coimbatore, Tamil Nadu. The red dots indicate the approxi-
mate locations of the sampled farm households. Credited to Ponnusamy 
et al.2. 



CLIMATE CHANGE IMPACTS AND ADAPTATION 
 

CURRENT SCIENCE, VOL. 110, NO. 7, 10 APRIL 2016 1259 

were the Decision Support System for Agrotechnology 
Transfer CERES Maize16,17 (DSSAT/CERES-Maize), and 
the Agricultural Production Systems Simulator (APSIM)18. 
These two models were used to simulate baseline (1980–
2010) and future maize yield across a heterogeneous 
population of 60 farms across the Coimbatore district. 
Details on the simulation setup and calibration informa-
tion can be found in Ponnusamy et al.2 and are briefly  
described herein. 
 Crop management parameters used in the simulation 
set-up for individual farms were derived from the results 
of a pre-designed socio-economic survey, widely used 
within Tamil Nadu Agricultural University, and adminis-
tered in our study region. The survey included a random 
selection of 60 representative farming households and  
information was collected for one year, while also query-
ing about the farmers’ experiences during ‘normal’ and 
‘extreme’ periods. The survey was structured to capture 
details on the crop varieties used, planting dates, planting 
geometry, and fertilizer applications during the NEM sea-
son. Farmers in the study region mainly planted the maize 
cultivars COH3 and COH(M)5 (ref. 2). The crop models 
were calibrated for these cultivars by using experimental 
field data collected at TNAU field sites. Survey reports 
indicated that the plant population normally adopted by 
farmers in the region varied from 60,000 plants/ha to 
80,000 plats/ha, depending on each farmer’s respective 
plant geometry. Survey results indicated large differences 
in the amount of fertilizer applied by farmers: of the 60 
farmers surveyed, three farmers used less than 150 kg of 
nitrogen ha–1; 30 farmers used 150–200 kg of nitrogen 
ha–1; and 27 farmers used more than 200 kg of nitrogen 
ha–1 (ref. 2). However, all the farmers applied nitrogen in 
the form of urea, split between three applications: 25% at 
basal; 50% at 30 days after sowing; and 25% at the  
flowering stage. The actual quantity of nitrogen fertilizer 
applied by each farmer was used in setting up the crop 
model experiments to better capture the heterogeneity 
among the farms2. 
 APSIM and DSSAT/CERES-Maize were calibrated for 
maize cultivars COH3 and COH(M)5 in the study region 
using experimental field data collected at sites belonging 
to Tamil Nadu Agricultural University, Coimbatore. Data 
were collected from six experiments – three were used for 
obtaining calibration data, and a separate set of three  
experiments were used for validating the genetic coeffi-
cients. For the COH3 maize cultivar, the sowing dates for 
each experiment included: 15/09/2000, 11/10/2000, 
30/10/2000, 11/07/2001, 24/07/2001, 24/08/2001. For the 
COH(M)5 maize cultivar, the six sowing dates included: 
15/07/2009, 30/07/2009, 15/08/2009, 15/07/2010, 30/07/ 
2010, 15/08/2010 (ref. 2). 
 Plant parameters and physiological characteristics in 
these crop models are given in the form of genotype coef-
ficients, which describe physiological processes such as 
development, photosynthesis and growth for individual 

crop varieties. In the DSSAT/CERES-Maize model, the 
genetic coefficients for maize are summarized in Table 1: 
P1, the thermal time from seedling emergence to the end 
of the juvenile phase; P2, the extent to which develop-
ment, expressed in days, is delayed for each hour increase 
in photoperiod above the longest photoperiod at which 
development proceeds at a maximum rate; P5, the ther-
mal time from silking to physiological maturity; G2, the 
maximum possible number of kernels per plant; G3, the 
kernel filling rate; and PHINT, the phylochron interval. 
The coefficients calibrated for simulating maize yield 
with APSIM (Table 2) include: the thermal times for 
emergence to end of juvenile (tt_emerg_to_endjuv); flower-
ing to maturity (tt_flower_to_maturity); flowering to start 
of grain (tt_flower_to_start_grain units); maximum number 
of grains per head (head_grain_no_max in numbers); and 
grain growth rate (grain_gth_rate in mg/grain/day)2. The  
calibrations were achieved by iteratively changing the rele-
vant coefficients to achieve the best possible match 
between the simulated and observed number of days to the 
phenological events and grain yield. There are small differ-
ences between some of the phenological parameter values 
for DSSAT/CERES-Maize and APSIM, which might be 
due to the different ways the two models parametrize crop 
growth, and their sensitivity to these parameters in achiev-
ing the best match to observations. These are continuing ar-
eas of research for the AgMIP11, of which this study is a 
part, and larger coordinated analyses are underway to 
highlight and better understand differences between the 
models. Simulations performed with the final set of pa-
rameters for both the models indicated good relationship 
between observed and simulated days to flowering, days 
to maturity, and yield as shown by the best-fit lines for 
each model in Figure 2 (ref. 2). 
 The calibration efficiency has been evaluated using the 
root mean square error (RMSE) and coefficient of deter-
mination (R2), which are presented in Table 3 (ref. 2). 
Overall, the DSSAT/CERES-Maize simulations for the 
COH(M)5 and COH3 cultivars showed relatively high R2 
values (>0.5) for days to anthesis, days to physiological 
maturity, and yield (kg/ha), which indicate good agree-
ment between observed and model simulated data19. 
DSSAT/CERES-Maize RMSE values for the major phe-
nological stages (measured in days) and yield (kg/ha) 
were relatively low (below 13% deviation) and largely 
similar between the cultivars, also indicating the models’ 
relatively good predictions2,20. Similarly, the results of 
the APSIM calibration also show reasonable predictabil-
ity, although it did show somewhat smaller R2 values than 
DSSAT/CERES-Maize for days to anthesis, physiological 
maturity and yield. Compared to DSSAT/CERES-Maize, 
the APSIM RMSE values for the COH(M)5 cultivar pho-
nological stages are smaller, however the RMSE for grain 
yield is slightly higher. 
 The soil inputs were obtained from a representative 
soil profile sample and were described by layer, inclusive
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Figure 2. Best-fit lines obtained for the genetic coefficients that gave the best match between simulated and observed days to flowering;  
maturity; and yield for two cultivars (a) COH3 and (b) COHM(5). Credited to Ponnusamy et al.2. 
 
 

Table 1. Genetic coefficients for cultivars of maize in DSSAT/CERES-Maize model 

Cultivar P1 P2 P5 G2 G3 PHINT 
 

COH3 310 0.530 900 600 7.90 38.3 
COH(M)5 330 0.520 860 769 8.50 38.8 

P1, Thermal time from seedling emergence to the end of the juvenile phase. 
P2, Extent to which development (expressed as days) is delayed for each hour increase in  
photoperiod above the longest photoperiod at which development proceeds at a maximum rate. 
P5, Thermal time from silking to physiological maturity. 
G2, Maximum possible number of kernels per plant. 
G3, Kernel filling rate. PHINT, Phylochron interval credited to Ponnusamy et al.2. 

 
 
of the physical, chemical, and morphological properties 
of the soil surface and each soil layer within the root 
zone2. The Coimbatore study region had two major soils 
comprised of clay and sandy loam. Clay soils had a depth 
of 138 cm, with a drainage lower and upper limits of 0.24 

and 0.44 cm3 cm–3 respectively. The bulk density ranged 
from 1.14 to 1.25 g cm3, the cation exchange capacity 
ranged from 21.6 to 26.2 cmol kg–1; and soil organic car-
bon ranged from 0.48% to 0.83% over the soil layers2. 
Sandy soils had a depth of 52 cm with drainage lower and 
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upper limit of 0.13 cm3 cm–3 and 0.25 cm3 cm–3 respec-
tively. The cation exchange capacity ranged from 9.2 to 
15.9 cmol kg–1, and soil organic carbon ranged from 
0.48% to 0.6% over the soil layers2. 
 Figure 3 a shows the baseline yields as simulated by 
DSSAT/CERES-Maize and APSIM. Though differences 
can be observed in the outlying values, these baseline 
simulation means are not significantly different, and have 
similar median values. There is a fairly large range  
between the 60 farmers in both simulations, and this is 
primarily attributed to the variation in management  
practices by individual farmers. Additionally, the stan-
dard deviations for each farm’s yield (Figure 3 b) from 
1980–2010 are higher as simulated by DSSAT/CERES-
Maize than by APSIM, suggesting that APSIM does not 
simulate as much interannual variability in response to 
 
 

Table 2. Genetic coefficients for maize cultivars in APSIM model 

Cultivar 1* 2* 3* 4* 5* 
 

COH3 330 845 117 793 4.6 
COH(M)5 450 910 100 510 6.5 
1*Time from emergence to end juvenile. 2*Time from flower to  
maturity. 3*Time from flower to start grain units. 4*Max head grain no. 
5*Grain growth rate credited to Ponnusamy et al.2. 
 
 
 

 
 

Figure 3. a, Baseline simulated yields (kg/ha) over 60 farms in 
Coimbatore district as simulated by DSSAT and APSIM. b, Base-line 
simulated yield standard deviations over 60 farms in Coimbatore dis-
trict as simulated by DSSAT and APSIM. 

the annually varying climate as DSSAT/CERES-Maize 
does. 

Baseline climate data and future climate scenarios 

A daily baseline weather series for the Coimbatore dis-
trict was obtained from the Tamil Nadu Agricultural Uni-
versity weather observatory, and included with solar 
radiation, maximum daily temperature (Tmax), minimum 
daily temperature (Tmin), rainfall and relative humidity from 
1980–2010. The dataset was completed with vapour pres-
sure, windspeed and dewpoint temperature, as calculated by 
the AgMIP Climate routines, available with the AgMIP 
Protocols21. To create a comparable weather file for each of 
the 60 farm sites, the observatory data underwent a mean 
‘bias adjustment’ using the monthly WorldClim climate da-
taset with high spatial resolution (5 km) to obtain more rep-
resentative values for the 60 farms sites21,22. Though the 
mean values of these adjusted datasets may better reflect 
the 60 farm sites, the intra-seasonal and inter-annual vari-
ability in the agro-climatic variables is maintained. 
 The AgMIP Climate Team Protocols21 largely informed 
the creation of the future climate projections. To summa-
rize, future climate projections were obtained by using 
the fifth Coupled Model Intercomparison Project (CMIP5) 
and the Representative Concentration Pathways for carbon 
emissions currently in use by the IPCC Fifth Assessment 
Report. Future climate projections were created by utiliz-
ing a ‘delta’ approach, in which the mean monthly 
changes in important agro-climatic variables were calcu-
lated by taking the difference between the RCP8.5  
climate scenario and simulated baseline conditions. These 
monthly mean agro-climatic changes, or deltas, were then 
applied to the daily baseline weather series for each  
respective month. The future climate series and the  
corresponding projected carbon dioxide concentration 
from RCP8.5 were then used in crop model simulations. 
For the scope of this study, we focus on the impacts  
related to the RCP8.5 mid-century (centered on 2055)  
future climate scenario. We refer to these future projec-
tions as ‘mean change scenarios’. This procedure was  
repeated for 20 of the CMIP5 GCMs, however, five 
GCMs were selected for their adequate representation of 
the climatic processes important in simulating the general 
Asian monsoon system, such as the spatial distribution of 
monsoon rainfall and the response of the monsoon system 
to various modes of climate variability, and general  
acceptance and wide use throughout the climate model-
ling community21. These models include the Community  
Climate System Model 4.0 (CCSM4)23; the Geophysical 
Fluid Dynamic Laboratory Earth System Model (GFDL-
ESM2M)24, the UK Met Office Hadley Centre Earth Sys-
tem Model (HadGEM2-ES)25, the Model for Interdisci-
plinary Research on Climate v5 (MIROC5)26 and the Max 
Planck Institute for Meteorology Earth System Model 
(MPI-ESM-MR)27. 
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Table 3. Model statistics 

 Days to anthesis Days to maturity Grain yield (kg/ha) 
 

Model Model stat. COH 3 COH(M)5 COH 3 COH(M)5 COH 3 COH(M) 5 
 

DSSAT R2 0.80 0.82 0.71 0.84 0.73 0.85 
 RMSE 1.35 2.12 2.83 2.04 490 351 
APSIM R2 0.65 0.81 0.56 0.64 0.66 0.64 
 RMSE 2.27 1.41 3.58 1.78 439 430 

Credited to Ponnusamy et al.2. 
 
 

 
 

Figure 4. The across–farm mean percentage change in yield from the 
simulated baseline for DSSAT and APSIM, plotted against (a) the 
change in mean Tmax from the baseline mean, and (b) the percentage 
change in total seasonal rainfall from the baseline mean. 

Results 

Simulated yield response to baseline climate  
conditions 

The baseline climate was evaluated for the NEM season, 
spanning October–November–December. For most of the 
climate variables, except for Tmin (not shown), no signifi-
cant trends were identified during the baseline period. 
Similarly, no significant strong trends were found in the 
1980–2010 simulated yields at the farm sites by either 
DSSAT/CERES-Maize or APSIM. Over the 1980–2010 
timeseries, the relationships between yield and several 
agroclimatic variables were assessed, and the strongest 
correlations were found between yield and mean Tmax, 
and yield and total seasonal rainfall. For example, the 

median farm simulated by APSIM showed correlation 
values of (Pearson’s) r = –0.48 and r = 0.44 between 
yield and mean Tmax, and yield total seasonal rainfall  
respectively. The median farm simulated by DSSAT/ 
CERES-Maize showed correlation values of r = –0.44 
and r = 0.61 between yield and mean Tmax, and yield and 
total seasonal rainfall respectively. 
 Figure 4 better highlights the relationship between 
baseline yield and mean Tmax and total seasonal rainfall, 
and contextualizes the yield responses that might occur 
with future climate change. The average percentage yield 
change across farms for DSSAT/CERES-Maize and 
APSIM is plotted against the change in mean Tmax (Figure 
4 a) and in total seasonal rainfall (Figure 4 b). Figure 4 a 
shows that as mean Tmax increases incrementally, there 
are significantly correlated reductions in yield from the 
baseline mean: DSSAT/CERES-Maize displays a Pearson’s 
r = –0.45; while APSIM displays a Pearson’s r = –0.54 
(both P-values below 0.02). In contrast, when the per-
centage change in yield is plotted against the percentage 
change in total seasonal rainfall from 1980–2010 average, 
a significantly correlated increase in yield is found for 
both crop models: DSSAT/CERES-Maize displays a 
Pearson’s r = 0.69; while APSIM displays a Pearson’s 
r = 0.43 (again, both p-values well below 0.02). 

Simulated yield response to baseline climate  
conditions with adaptation options 

We expect agricultural systems to develop with time, 
such that climate change will impact future modified ag-
ricultural systems that have taken advantage of various 
adaptation strategies. However, it is also possible that by 
implementing various adaptations and crop management 
strategies, farmers may see benefits under current (base-
line) climatic conditions. Quantifying the yield impacts 
of various adaptation strategies under baseline conditions 
can help to better contextualize their true efficacy under 
future climate change conditions28. Figure 5 shows the 
percentage change (from baseline yield) for three adapta-
tion strategies tested in this study: (a) an earlier date of 
sowing; (b) the application of an extra 20% dosage of ni-
trogenous fertilizers; and (c) the application of 50 mm of 
supplemental irrigation during the flowering stage. Both 
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the APSIM and the DSSAT/CERES-Maize models show 
median farm yield increases of 20% and above, although 
APSIM displays a larger range of response across the 60 
farms to the sowing date adaptation strategy. Adding  
additional fertilizer had very minimal effects on the  
modelled yields and yield variation, across the farms. 
Adding supplemental irrigation improved maize yields 
for a majority of the farms, a consistent finding between 
both crop models, and both models show a smaller inter-
quartile range than when compared to altering the sowing 
date.  

Simulated yield response to mean climate changes 

Figure 6 shows box and whisker plots of the mean  
temperature and precipitation changes projected by 
20 GCMs. They generally showed increased temperatures 
throughout the year, and increases in NEM rainfall in the 
Coimbatore District, while rainfall during the SWM is 
not shown to increase substantially. However, some of 
the 20 GCMs also indicated declines in rainfall, and so 
there is some uncertainty in these projections. The GCMs 
do largely agree that Coimbatore will experience a sig-
nificant warming throughout the year (Figure 6 a). How-
ever, there is a 2–3C spread between the projected 
increases, with MIROC5 showing the smallest increase in 
temperature, and the HadGEM2-ES showing the greatest 
warming (Figure 7). Furthermore, minimum temperatures 
(not shown) are also projected to increase by all the 
GCMs, and the magnitude of increase in minimum tem-
perature was considerably higher compared to maximum 
temperature. 
 Figure 7 shows the spread in the projected temperature 
and rainfall changes (from baseline) simulated by 
20 GCMs during the NEM. All models show a warming, 
while the precipitation response is decidedly more uncer-
tain. The intersecting black lines indicate the threshold of 
 
 

 
 

Figure 5. The percentage change in yield across 60 farms as simu-
lated by the APSIM and DSSAT for the following adaptation options 
tested under baseline climate conditions: a, earlier date of sowing; b, 
the application of fertilizer at critical stages; c, irrigation applied at 
critical stages. 

change considered significant (using a Z-test and 30 
growing seasons of climate data, taken for the 0.05 sig-
nificance level) for temperature and rainfall21. While all 
temperature changes are significant, 11 of the GCMs 
show insignificant precipitation changes, while 9 display 
significant rainfall changes.  
 The projected mean climate changes from the GCMs 
were applied to the 1980–2010 baseline climate series 
and used in the APSIM and DSSAT/CERES-Maize simu-
lations to evaluate the mean-change climate impact on 
current crop production. Figure 8 shows the relative yield 
change across the 60 farms as simulated by APSIM and 
DSSAT/CERES-Maize for each of the five chosen GCMs. 
There are some very apparent differences between the 
crop model simulations. In general, DSSAT/CERES-
Maize shows a larger spread amongst the farmers, and 
shows substantial yield gains with median values compa-
rable across the GCMs. DSSAT/CERES-Maize simulated 
yield losses do not exceed 10%. APSIM, on the other 
hand, shows a smaller inter-quartile range between the 
farms and, generally, more yield losses, particularly when 
using the mean climate changes from the CCSM4 and the 
MPI-ESM-MR. However, few farms as simulated by 
APSIM showed non-trivial yield gains in the upper per-
centile (MIROC5, GFDL-ESM2M, and HadGEM2-ES), 
and MIROC5 showed median farm yield increases. Table 4 
shows the change from baseline in mean Tmax and the 
percentage change in total seasonal rainfall for the five 
GCMs being considered, as these were shown to be moder-
ately to highly correlated with baseline yields. Also 
shown in Table 4 are the average percentage changes in 
yield across the 60 farms as simulated by DSSAT/ 
CERES-Maize and APSIM. The average yield changes 
are consistent with the results discussed above, and again 
indicate the contrary responses between DSSAT/CERES-
Maize, which indicate substantial yield gains, and APSIM, 
which simulates yield declines, though with a smaller 
magnitude of change. Only with the MIROC5 GCM, 
which had a 17.7% increase in rainfall but the lowest in-
crease in temperature of the GCMs at 0.63˚C, did both crop 
models show increased mean yields across the farms. 

Simulated yield response for the ‘adapted’  
agricultural system to mean climate changes 

We revisit the adaptation strategies tested here, but now 
simulate them under future climatic conditions. Figure 9 
represents the yield change due to adaptation strategies 
when applied under future climatic conditions and com-
pared to future yields (without adaptation). Here the yield 
impacts are more modest – an altered date of sowing and 
the strategic application of irrigation water at critical 
stages produced higher yield gains across the farms and 
climate models than applying additional fertilizer. The 
response between the crop models was quite similar, and
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Figure 6. Projected changes in monthly mean (a) temperature and (b) rainfall for RCP 8.5 Mid-Century in Coimbatore. Black lines and stars indi-
cate the baseline climate and the box-whisker plots show the spread in projections amongst the 20 GCMs taken from CMIP5. Averages for the  
annual (ann), January–March (JFM), April–June (AMJ), July–September (JAS), and October–December (OND) are shown at the far right of each 
plot2. 
 

 

 
 

Figure 7. Projections for NEM rainfall and mean temperatures under 
RCP 8.5 Mid-Century climate conditions in Coimbatore. Black lines 
indicate calculated significance thresholds (at the 0.05 level), beyond 
which the temperature and rainfall changes become significant. The 
black square indicates the baseline temperature and seasonal mean rain-
fall2. 
 
 
 
adding irrigation additionally resulted in a slightly larger 
interquartile range between the farms, while an earlier 
date of sowing showed a larger number of ‘outlier’ farms, 
and a smaller range.  

Evaluating the efficacy of adaptation strategies  
under future climate conditions 

Lastly, we evaluate the efficacy of these strategies by 
comparing adaptation applied under future climatic con-
ditions with adaptation applied under baseline climatic 
conditions (Figure 10). To do this, we utilize the recom-
mendations presented in Lobell28, in which we take the 
difference between the impact of the adaptation strategy 
under baseline conditions (i.e. the percentage change in 
yield as simulated without adaptation) and the impact ad-
aptation conferred under future climate conditions. Ulti-
mately, we are interested in assessing how much bigger 
or smaller the impact of adaptation was between current 
and future levels of climatic stress28. Figure 10 shows these 
results across farms for the three adaptation strategies 
tested. With an earlier date of sowing, we find consistency 
between the crop models and across the climate models in 
their reduced efficacy amongst most of the farms under 
future climatic conditions (compared to baseline condi-
tions). APSIM showed a larger range between the farms 
than DSSAT/CERES-Maize, but there is a general agree-
ment on the sign of change. Adding additional fertilizer 
resulted in somewhat different responses of APSIM and 
DSSAT/CERES-Maize. DSSAT/CERES-Maize showed 
small increases in the adaptation efficacy for the  
median farm and a range up to 6%, whereas APSIM
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Figure 8. The percentage change in yield from the Baseline climate across 60 farms as simulated by the APSIM and DSSAT 
crop models for the GCMs (a) CCSM4, (b) GFDL-ESM2M, (c) HadGEM2-ES, (d) MIROC5 and (e) MPI-ESM-MR under RCP8.5 
Mid-Century climate conditions (no adaptation strategies utilized). 

 
Table 4. The change in mean Tmax, total seasonal rainfall, and the corresponding maize crop model responses averaged over 60 farms in  
 Coimbatore 

GCM/Change in variable CCSM4 GFDL-ESM2M HadGEM2-ES MIROC5 MPI-ESM-MR 
 

Change in mean Tmax (C) 1.65 1.60 1.77 0.63 1.66 
Change in total OND rainfall (% change from baseline) 14.6 44.1 49.6 17.7 3.5 
Change in DSSAT yield (% change from baseline) 18.4 23.4 14.3 23.0 12.4 
Change in APSIM yield (% change from baseline) –8.4 –2.8 –3.6 3.5 –9.1 

 
showed declines across all the farms of up to 14%. The 
crop models again displayed differences in their re-
sponses when supplemental irrigation was applied at 
critical stages. APSIM showed some small increases in 
efficacy across most of the farms, including the median 
farm, while DSSAT/CERES-Maize showed mostly small 
to moderate declines across the farms, and generally a lar-
ger range of results (with the exception of HadGEM2-ES). 

Discussion 

Baseline agroclimate analysis 

Baseline yield simulations were not significantly differ-
ent between APSIM and DSSAT/CERES-Maize, which 
produced similar median farm values. Generally, DSSAT/ 
CERES-Maize produces more variability than APSIM 
amongst the simulated farm sites, which may indicate 
that DSSAT/CERES-Maize may be more sensitive to the 
heterogeneity in the farms’ management strategies.  
Indeed, the diversity in management (e.g. fertilizer appli-
cations), soils, and non-weather environmental conditions 
could play a confounding role when interpreting the inter-
farm variability in the baseline yields, and continued 
work will seek to isolate and understand these effects. 

 The relationship between the modelled baseline yields 
and mean Tmax and total seasonal rainfall show how these 
agro-climatic variables may be important to regional 
maize growth. The yield–climate variable relationships 
shown in Figure 4 display fairly high and significant  
correlations, with substantial yield declines associated 
with even a degree of warming from the baseline mean (a 
smaller change than most mid-century projections). In 
contrast, there is also a strong positive relationship  
between yield and total seasonal rainfall, with DSSAT/ 
CERES-Maize displaying a stronger correlation, and  
perhaps sensitivity to rainfall than APSIM. Future  
impacts to yield will actually be dependent on the inter-
play of the agro-climatic variables, as well as other non-
climate variables, but such analyses can help modellers to 
identify the most important variables to consider under 
future climate change. 

Applying adaptation under baseline climate  
conditions 

Following the reasoning of Lobell28, we evaluated our 
proposed adaptations under current climatic conditions to 
understand the benefits they may confer under present 
(climate) stress levels, and to more adequately assess
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Figure 9. The relative yield change between crop simulations of the future climate with adaptation options and simulations of the future climate 
without adaptation for 60 farms, using the DSSAT and APSIM crop models. Simulations are shown for the following GCMs: CCSM4, GFDL–
ESM2M, HadGEM2–ES, MIROC5, and MPI–ESM–MR under RCP8.5 Mid-Century climatic conditions. a, The response to an earlier date of  
sowing; b, application of additional fertilizer; c, irrigation applied at critical stages. 
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Figure 10. The relative benefits of adaptation strategies between Baseline and Future climates. For each adaptation strategy, an 
earlier date of sowing (a), application of additional fertilizer (b), and supplemental irrigation at critical stages (c), the boxplots 
show the percentage yield change resulting from adaptation applied in the future climate minus the percentage yield change result-
ing from adaptation applied in the baseline climate. The boxplots represent these results across the 60 farms in the Coimbatore 
District, and are shown for the following GCMs: CCSM4, GFDL–ESM2M, HadGEM2–ES, MIROC5, and MPI–ESM–MR run 
with RCP8.5 Mid-Century climate conditions. 
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their efficacy under future climate stress levels. Under 
current conditions, most of the farms benefited from an 
earlier date of sowing and from supplemental irrigation 
provided at critical stages of growth. In the former strat-
egy, APSIM simulated a wide spread amongst the farms, 
although most of the farms generally saw substantial 
yield gains. Given this wide range of results, the actual 
benefit conferred by an earlier sowing date in APSIM 
may also depend upon the other attributes of an individ-
ual farm’s management. In contrast, DSSAT/CERES-
Maize showed a smaller amount of variability amongst 
the farms in their response, but no farms showed signifi-
cant declines in yield, suggesting that all the farms, de-
spite their unique management, could see at least some 
benefit. DSSAT/CERES-Maize and APSIM showed simi-
lar moderate responses to supplemental irrigation, with 
no farms experiencing significant declines. However, the 
average farm gain simulated with APSIM was not as high 
as compared to an earlier date of sowing, while the gains 
for DSSAT/CERES-Maize were comparable between the 
two strategies. In reality, a combination of these two 
strategies might be employed under current conditions to 
obtain full yield benefits, as both models show yield  
improvements of varying degrees. Neither model simulated 
substantial benefits, or losses with additional fertlizer, 
suggesting that this strategy may not be as effective as 
the other two tested under current climate conditions. 
 The relative differences in the responses of DSSAT/ 
CERES-Maize and APSIM to water availability, and 
other agricultural inputs and management strategies, are 
currently under investigation in extensive AgMIP multi-
model intercomparisons to improve and better apply crop 
models to impacts assessments. There is also a need for ad-
ditional coordinated observed field data to validate and/or 
affirm which results are the most regionally representative. 

The impact of future climate change 

The APSIM and DSSAT/CERES-Maize responses to  
future climate changes as projected by the subset of five 
GCMs showed some significant differences. From Table 4, 
we find that only the MIROC5 GCM, which displayed 
the lowest temperature increase and a relatively moderate 
increase in rainfall, produced yield gains for the baseline 
in both crop models. For every other GCM, APSIM  
displays average yield declines despite substantial  
increases in rainfall. The highest rainfall increases, shown 
for the GFDL-ESM2M and the HadGEM2-ES, show the 
lowest yield declines. This is consistent with the correla-
tions displayed in Figure 4, in which APSIM was more 
highly correlated with temperature than DSSAT/CERES-
Maize, and more highly correlated with temperature than 
rainfall. Interestingly, similar responses for APSIM can 
be found in different regions, operating under different 
climate regimes. For example, Lobell et al.29 found that 

increasing temperature (and, in tandem, extreme degree 
days >30C) was more impactful on summertime US 
maize growth than reductions in rainfall, as the tempera-
ture increases induce water stress via increasing the  
vapour pressure deficit, which the authors note is not  
explicitly included in computing the water demand in 
DSSAT/CERES-Maize30. However, that study was con-
ducted for climate conditions that increased temperature, 
but without concurrent increase in rainfall, which is pro-
jected for southern India. In the context of their study, 
Lobell et al.29 posit that large rainfall changes are needed 
in order for APSIM maize growth to display sensitivity to 
rainfall. Some of our climate models show rainfall 
changes in excess of 40% increases, and yet yield de-
clines in response to temperature persisted for most of the 
farms simulated. Therefore, we stress that more sensitivity 
testing is needed to identify if large increases in rainfall, or 
rainfall timing and distribution, could partially mitigate loss 
due to high temperature increases. Overall, APSIM maize 
simulations in this region may be more sensitive to tem-
perature than rainfall, and more work will be undertaken to 
establish if these rising temperatures induce water stress, 
despite the increased rainfall. In stark contrast, DSSAT/ 
CERES-Maize shows substantial yield gains, largely due to 
increased rainfall, and despite the temperature increases, to 
which it may not display the same sensitivity at APSIM29. 
Again, this suggests that DSSAT/CERES-Maize has an  
increased sensitive water response relative to APSIM, 
which is also consistent with the relationships discussed in 
Figure 4, our baseline agro-climatic assessment. 
 Across the farms shown in Figure 8, APSIM generally 
appeared to be less sensitive to the mean climatic changes 
imposed, showing median values close to zero or within  
–10% to +10% change across the 60 farms for most 
GCMs. Generally, where the temperature increases were 
high, and the rainfall increases were relatively low, 
APSIM showed declines across most of the farms. By 
contrast, DSSAT/CERES-Maize simulated a larger range 
of responses across the farms for all GCMs, though gen-
erally most farms experienced gains owing to the  
increased rainfall. The HadGEM2-ES had the highest 
temperature increases, to which DSSAT/CERES-Maize 
responded with small yield declines of under 10%, but 
the median farm values were consistently well above 
zero. There is a need to understand how representative 
these responses are of observed sensitivities, as the  
results of this study suggests that the impacts of climate 
change are significantly different depending on whether 
water or temperature is considered a more limiting factor.  

Evaluation of adaptation options between baseline  
and future climates 

In order to appropriately represent the impact of adapa-
tion between the baseline and future climates, we follow 
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the methodology proposed in Lobell28, which evaluates 
the difference in impact (in our case, percentage yield 
change) between adaptation applied in the future and  
adaptation applied in the baseline (Figure 10). There were 
few additional benefits conferred by an earlier sowing 
date, and all the GCM-crop model combinations show 
negative median values, indicating that the efficacy of the 
sowing adaptation is reduced when applied under future 
climatic conditions (compared to when it is applied under 
baseline climatic conditions). When additional fertilizer 
adaptations are tested, DSSAT/CERES-Maize shows a 
slightly more positive response, but the additional gains 
by applying this adaptation strategy under future climatic 
conditions are all under 10%, suggesting that its efficacy 
under future climatic conditions is more limited. APSIM 
differs in this result, and again shows a lesser impact of 
added fertilizer under future conditions than when com-
pared to baseline conditions. The impact of added water 
through supplemental irrigation has a mixed response 
among the models as well. APSIM responds more  
favourably to added irrigation water, with median farm 
values showing larger gains under future climatic condi-
tions than under baseline climatic conditions, which is  
interesting given that the response to increased rainfall 
with climate change overall was quite small compared to 
DSSAT/CERES-Maize (and even resulted in some  
declines). Given the discussion above, if APSIM’s  
response is in fact partially governed by an increased  
water stress due increased temperatures, the deliberate 
addition of supplemental irrigation timed with important 
crop growth stages may act to alleviate some of this 
stress. Follow-up assessments to this study will better 
characterize this response to adaptation. DSSAT/CERES-
Maize, on the other hand, shows marginal benefits, and 
mostly decreases in the benefits conferred by applying 
supplemental irrigation under future climate conditions 
(compared to when supplemental irrigation is applied  
under baseline climate conditions). 
 All three maize adaptation strategies tested, which rely 
on modifying on-farm production management rather 
than incorporating technological developments or trans-
formative changes, appear to have limited added value 
under future climatic conditions for most of the farms 
simulated, compared to when they are tested under base-
line climate conditions. This result is consistent with find-
ings from other more generalized studies such as 
Challinor et al.31, in which a number of yield impact studies 
were summarized to find that adaptation (in many forms) 
did not appear to significantly improve, or counteract, the 
losses incurred at tropical maize sites. Some of the yield 
gains under the baseline climatic conditions simulated here 
would suggest that an earlier date of sowing and supple-
mental irrigation are useful strategies to adopt under the 
current climate, particularly in combination, but new 
strategies with greater efficacy under future conditions 
may need to be developed to administer in this region. 

Limitations and uncertainty 

Based upon the results presented here, it would appear 
that APSIM displays a greater sensitivity to temperature 
increases, while DSSAT/CERES-Maize is more respon-
sive to rainfall increases in this domain – both climatic 
changes are robustly projected in future climate simula-
tions conducted by GCMs, although recent studies are 
more deeply exploring just how representative these pro-
jections actually are in the context of current monsoon 
rainfall trends6. Follow-up work to this study will further 
investigate the baseline and future variability in important 
agro-climatic variables, such as the mean Tmax shown 
here, but also in the monsoon onset and intra-seasonal 
rainfall distribution, to which yields may also display 
sensitivity currently and/or in a warmer future. 
 However, the substantial differences in yield response 
shown here between DSSAT/CERES-Maize and APSIM 
suggest that the crop models may introduce more uncer-
tainty into South Indian climate–agriculture impact assess-
ments than the global climate models, which largely 
agree on the sign of change for major agro-climatic vari-
ables. The differences in the processes parametrized and 
incorporated in these crop models warrant further evalua-
tion, and are currently under investigation in a variety of 
AgMIP crop model intercomparisons32. In addition to 
sensitivity assessments, we call for additional validation 
and comparison at each AgMIP regional research sites, 
such as the Coimbatore District, to observed field data, 
preferably over multiple years, in order to better check 
the model performance. 
 Some uncertainty is also introduced by the heterogene-
ity in management practices amongst farmers, noted in 
Figure 3, where fairly wide ranges exist in the baseline 
yield simulations across farms. Further exploration is 
therefore warranted of the yield response sensitivity to 
the different types of management across the farms. For 
example, future work building upon this study may group 
the farmers according to their fertilizer usage, for which 
we identified at least three distinct groupings of fertilizer 
amounts in Section 2, so that the sensitivities and vari-
abilities of yield response to climatic changes within one 
‘fertilizer group’ can be assessed. This could be further 
compared to model-based sensitivity experiments that 
vary over fertilizer application levels to understand if and 
how models may be capturing the ‘observed’ sensitivity. 
Likewise, farmers could also be grouped by various 
socio-economic metrics, such as farm income, poverty 
level, etc. (for which fertilizer applications may be corre-
lated), and the differences in crop-response that arise 
from socio-economic conditions could be further  
explored. Such findings could lend themselves to design 
adaptation strategies targeting the most needful farms. 
 Given the ongoing need to understand the differences 
between these two crop models, the findings of this study 
do not present conclusive evidence as to which model 
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more adequately captures the impact of climate change 
on the maize yields in Coimbatore. Rather, this is among 
the first studies comparing crop–maize–yields between 
different models in southern India, in the context of both 
baseline and future climatic conditions. We believe these 
results highlight the disparate responses between the crop 
models that had not been visualized before for this  
region/district, under conditions of both increasing  
temperature and rainfall. However, this is a necessary  
illustration of uncertainty that warns against utilizing just 
one crop model for climate–impacts assessments, and 
identifies areas for targeted research to understand these 
models’ discrepancies. 
 Despite the differences in modelled yield response to 
future climatic conditions, perhaps one of the more gen-
eral findings across all the climate and crop models was 
the lack of significant improvement in the efficacy of the 
tested adaptation options under future climatic condi-
tions. Altering the sowing date and applying supplemen-
tal irrigation did appear to produce some yield 
improvements when applied under baseline conditions for 
both crop models (although there was some variation 
across farms), and these might be management strategies 
currently worth incorporating. However, the gains of  
applying these adaptations under future climatic condi-
tions diminished substantially, and in a large portion of 
the farms – across both crop models and for all GCMs – 
there was actually less of a gain under future climatic 
conditions than under baseline climatic conditions (for a 
few farms, there were even losses in yield due to the  
imposition of adaptation, as was also noted for some of 
the tropical maize sites detailed in Challinor et al.31). 
This study did not incorporate current technology trends 
or yield improvements that are expected to occur outside 
specific efforts to adapt to climate change, but such ex-
plorations are currently underway to better understand 
how these impact the efficacy of future climate change 
adaptations2. However, the adaptation results presented 
here would suggest that new, perhaps more transforma-
tive, adaptation strategies may be needed in this region, 
particularly if the projections for increased rainfall are 
accurate, as there may be ways to take advantage of  
such a change (by using improved varieties, or planting  
different crops, or building more rainwater harvesting and 
irrigation infrastructures, for example). 

Conclusions 

This study utilized two widely-used cropping system 
models, APSIM and DSSAT/CERES-Maize, as well as 
five CMIP5 global climate models to understand the  
impact of climate change on maize yields in the Coimba-
tore District in southern India. Our study enables us to: 
(1) characterize how these models simulate baseline 
(1980–2010) maize yields and their sensitivity to impor-

tant agro-climate variables; (2) evaluate the impact of 
climate change on maize yields using a multi-model  
approach; and (3) describe the efficacy of various adapta-
tion strategies with respect to the baseline and the future 
climatic conditions, while also considering the sources of 
uncertainty introduced by these models and climate-crop 
systems. Overall, we found that DSSAT/CERES-Maize 
appeared more sensitive to changes in rainfall, while 
APSIM responded more to temperature increases under 
both baseline and future climatic conditions. The future 
climate projections were fairly robust across five GCMs, 
which showed increases in both rainfall and temperature. 
This led to different predictions of yield response to  
future climate changes, with APSIM showing yield declines 
and DSSAT/CERES-Maize showing yield improvements. 
The respective response of crop models to each GCM 
was largely consistent, even if the crop models did not 
agree on yield response. This suggests that these crop 
models may be a larger source of uncertainty in future 
yield assessments in this district than the global climate 
models. More sensitivity testing, coupled with observed 
data to help validate crop model simulations at the site, is 
required to understand which model most accurately 
represents the maize response in this region. We suggest 
that understanding the sensitivity of these models to  
temperature increases (and perhaps how this impacts  
water stress) while also including rainfall increases, could 
help to better identify the models’ differences and im-
prove them for maize simulations in southern India, or 
other monsoon domains where these climate projections 
may be similar. Such analyses are currently being under-
taken by the AgMIP regional crop model intercompari-
sons, of which this study is an initial result. With respect 
to the adaptation options tested, generally, an earlier date 
of sowing and supplemental irrigation adaptation strate-
gies seemed to bring positive yield results to most of the 
farms under baseline climate conditions. However, the  
efficacy, or gains of these adaptations were substantially 
diminished under future climatic conditions for both crop 
models despite their differences. This suggests that these 
types of simple on-farm management strategies may not 
be enough to combat future climate change in the region, 
or to take advantage of potential increases in rainfall, in 
the context of these simulations. Adaptation options with 
improved varieties or infrastructural investments to bene-
fit from increased rainfall may yield better results as  
future adaptation strategies. 
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