Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Kichu, Rizongba
- Impact of Continuous Fourteen Years of Integrated Nutrient Management Practices on Forms of Soil N and P on Terraced Land
Abstract Views :316 |
PDF Views:1
Authors
Affiliations
1 Department of Soil and Water Conservation, School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema Campus, Medziphema (Nagaland), IN
2 Department of Soil Science, Assam Agricultural University, Jorhat (Assam), IN
1 Department of Soil and Water Conservation, School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema Campus, Medziphema (Nagaland), IN
2 Department of Soil Science, Assam Agricultural University, Jorhat (Assam), IN
Source
An Asian Journal of Soil Science, Vol 12, No 1 (2017), Pagination: 80-85Abstract
An experiment was conducted in the experimental farm at School of Agricultural Sciences and Rural Development, Medziphema, Nagaland to find out the impact of continuous fourteen years integrated nutrient management practices on forms of soil N and P on terraced land. Twelve treatments involving N, P and K fertilizers, farmyard manure, poultry litter, forest litter, Azospirillum and Zn either alone or in combinations were applied continuously for fourteen years. The highest NH4-N content was recorded in NPK+ FYM+ Zn followed by NPK+ FYM treatment, whereas the highest NO3-N content was in NPK followed by NPK+ FYM and NPK+ FYM+ Zn treatments. After fourteen years, the rate of build up of available N in different nutrient management practices was 0.5 to 10.3 kg N ha-1 yr-1 with an average of 5.8 kg N ha-1 yr-1 whereas, the rate of build up of total N in various nutrient management practices was 1 2.8 to 16.1 kg N ha-1 yr-1 with an average of 11.2 kg N ha-1 yr-1. The significant increase in organic N in NPK+ FYM, NPK+ poultry litter and NPK+ FYM+ Zn treatments over NPK was 5.7, 5.0 and 5.4 per cent, respectively. The inorganic P in NPK+ poultry litter, NPK+ FYM+ Zn and NPK+ FYM was 5.8, 3.8 and 2.2 per cent higher as compared to NPK, respectively. The rate of build up of available P in different treatments was 0.01 to 0.76 kg P ha-1 yr-1 with an average of 0.49 kg P ha-1 yr-1. On an average, solution P, inorganic P, available P and organic P represented 0.3, 40.6, 3.3 and 59.6 per cent of total P.Keywords
N Fraction, P Fraction, Terraced Land.References
- Anderson, G. (1960). Factors affecting the estimation of phosphate esters in soil. J. Sci. Food & Agric., 11: 497-503.
- Bajpai, R.K., Chitale, Shrikant, Upadhyay, S.K. and Urkurkar, J.S. (2006). Long term studies on soil physico-chemical properties and productivity of rice-wheat system as influenced by INM in Inceptisol of Chhattisgarh. J. Indian Soc. Soil Sci., 54: 24-29.
- Bharadwaj, V., Bansal, S.K., Maheswari, S.C. and Omanwar, P.K. (1994). Long term effects of continuous rotational cropping and fertilization on crop yields and soil properties-III. Changes in the fractions of N, P and K of the soil. J. Indian Soc. Soil Sci., 42: 392-397.
- Bray, R.H. and Kurtz, L.T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Sci., 9: 39-45.
- Chopra, S.L. and Kanwar, J.S. (1991).Analytical agricultural chemistry. 4th Ed. Kalyani Publishers, NEW DELHI, INDIA.
- Duraisami, V.P., Perumal, Rani and Mani, A.K. (2001). Impact of integrated nitrogen supply system on sorghum yield, uptake and N balance in an Inceptisol. J. Indian Soc. Soil Sci., 49: 439-444.
- Durani, Asmatullah, Brar, B. S. and Dheri, G.S. (2016). Soil nitrogen fractions in relation to rice-wheat productivity: effects of long-term application of mineral fertilizers and organic manures. J. Crop Improv., 30(4): 399-420.
- Dutta, Manoj and Chauhan, B.S. (2011). Effect of integrated nutrient management practices on the various forms of soil phosphorus in a newly developed terraced land. Environ. & Ecol., 29: 127-132.
- Gomez, K.A. and Gomez, A.A. (1984). Statistical procedures for agricultural research (2nd Ed.). John Wiley & Sons, INC., UK, 20.
- Gupta, R.K., Sharma, K.N., Singh, Bijay, Singh, Yadvinder and Arora, B.R. (2005). Effect of urea and manure addition on changes in mineral-N content in soil profile at various growth stages of wheat. J. Indian Soc. Soil Sci., 53: 74-80.
- Humtsoe, M. and Chauhan, B.S. (2005). Long term effect of nutrient management practices on soil fertility determinants on terraces land. Indian Agriculturist., 49: 53-64.
- Jackson, M.L. (1973). Soil chemical analysis, Prentice Hall of India Pvt. Ltd., NEW DELHI, INDIA.
- Laxminarayana, K. (2006). Effect of integrated use of inorganic and organic manures on soil properties, yield and nutrient uptake of rice in ultisols of Mizoram. J. Indian Soc. Soil Sci., 54: 120-123.
- Laxminarayana, K. and Patiram (2006). Effect of integrated use of inorganic, biological and organic manures on rice productivity and soil fertility in ultisols of Mizoram. J. Indian Soc. Soil Sci., 54: 213-220.
- Russell, E.W. (1973). Soil conditions and plant growth. 10th Ed. Longman and Co., LONDON, UNITED KINGDOM.
- Sekhon, Karamjit Singh, Singh, J.P. and Mehla, D.S. (2011). Long-term effect of manure and mineral fertilizer application on the distribution of organic nitrogen fractions in soil under a rice-wheat cropping system. Archiv. Agron. & Soil Sci., 57(7): 705-714.
- Shilpashree, V. M., Chidanandappa, H.M., Jayaprakash, R. and Punitha, B.C. (2012). Effect of integrated nutrient management practices on distribution of nitrogen fractions by maize crop in soil. Indian J. Fundament. & Appl. Life Sci., 2(1): 38-44.
- Sihag, D., Singh, J.P., Mehla, D.S. and Bhardwaj, K.K. (2005). Effect of integrated use of inorganic fertilizers and organic materials on the distribution of different forms of nitrogen and phosphorus in soil. J. Indian Soc. Soil Sci., 53: 80-84.
- Singh, Fateh, Kumar, Ravindra and Pal, Samir (2008). Integrated nutrient management in rice-wheat cropping system for sustainable productivity. J. Indian Soc. Soil Sci., 56: 205-208.
- Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for the determination of available nitrogen in soils. Curr. Sci., 25: 259-260.
- Watanabe, F.S. and Olsen, S.R. (1965). Test of an ascorbic acid method for determining phosphorus in water and sodium bicarbonate extracts from soils. Soil Sci. Soc. Am. Proc., 29: 677-678.
- Xu, Yangchun, Chen, Wei. and Shen, Qirong (2007). Soil organic carbon and nitrogen pools impacted by long-term tillage and fertilization practices. Communic. Soil Sci. & Pant Anal., 38(3-4): 347-357.
- Yang and Lijuan (2010). Long-term fertilization effect on fraction and distribution of soil phosphorus in a plastic-film house in China. Communic. Soil Sci. & Pant Anal., 42(1): 1-12.
- Effect of Simulated Soil Erosion and Organic Manures on Soil Properties
Abstract Views :799 |
PDF Views:0
Authors
Affiliations
1 Department of Soil and Water Conservation, School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema Campus, Medziphema (Nagaland), IN
1 Department of Soil and Water Conservation, School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema Campus, Medziphema (Nagaland), IN
Source
An Asian Journal of Soil Science, Vol 15, No 1 (2020), Pagination: 34-40Abstract
A field experiment was carried out to evaluate the effects of simulated erosion and the impact of organic manures on soil physico-chemical properties. The experiment was conducted in split- plot design which comprised of three levels of simulated erosion depths viz., 0, 5 and 10 cm used as the main plot. Organic manures (vermicompost, poultry manure and pig manure @ 5, 3 and 3 t-1 ha, respectively) were used as the sub plot treatment. There was a significant effect on the physico-chemical properties of soil due to erosion. The available nitrogen decreased at a rate of 2.86 and 7.81 per cent; available P decreased at a rate of 9.09 and 17.18 per cent; available K decreased at a rate of 9.52 and 15.12 per cent; organic carbon decreased at a rate of 0.07 and 0.15 per cent; CEC decreased at a rate of 2.81 and 5.48 per cent; water holding capacity decreased at the rate of 4.07 and 7.29 per cent while bulk density increased at a rate of 3.49 and 9.30 per cent and soil pH decreased at a rate of 4.12 and 7.20 per cent, respectively with subsequent removal of 5 and 10 cm topsoil as compared to control. Addition of organic manures improved the soil properties but could not entirely compensate the loss due to simulated erosion.Keywords
Simulated Erosion, Organic Manures, Soil Physico-Chemical Properties.References
- Chauhan, B.S. and Naropongla (2009). Effect of simulated erosion and nitrogen levels on physio-chemical properties and N, P and K availability in Nagaland soil. Environment & Ecology, 27: 95-99.
- Gomez, K.A. and Gomez, A.A. (1984). Statistical proceduresfor agricultural research (2nd Ed.). John Wiley and Sons, INC.,UK, 20.
- Govidan, K. and Thirumurugan, V. (2002). Effect of organic manure for sustaining productivity in soybean. Finance Agriculture, 43: 23-26.
- Jackson, M.L. (1973). In: Soil chemical analysis. Prentics Hall of India Pvt. Ltd., New Delhi. pp. 498-516.
- Han, S.H., An, J.Y., Hwang, J., Kim, S.B. and Park, B.B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Litriodendron tulipifera Lin.) in a nursery system. J.Forest Sci. & Technol., 12 (3): 137-143.
- Hussain, Z., Chauhan, B.S. and Dutta, M. (2000). Effect of surface soil removal and nitrogen level on the performance of upland paddy (Oryzae sativa L.). In: Proceeding of Int.workshop on Agroforestry and forest products (L.K. Jha et al., eds.), Mizoram Campus, NEHU, Aizawl, India. 269-274pp.
- Lal, R. and Moldenhauer, W.C. (1987). Effects of soil erosion on crop productivity. J. Critical Reviews in Plant Sciences, 5 (4): 303-367.
- Majumdar, S.P. and Singh, R.A.(2000).Analysis of soil physical properties (Ed) . Agrobios, New Delhi, India.
- Manivannan, S., Ranganathan, L.S., Balamurugan, M. and Parthasarathi, K. (2009). Effect of vermicompost on soil fertility and crop productivity- Beans (Phaseolus vulgaris). J. Environmental Biology, 30 (2): 275- 281.
- Oyedele, D.J. and Aina, P.O. (2006). Response of soil properties and maize yield to simulated erosion by artificial topsoil removal. Plant & Soil, 284 (1-2): 375-384.
- Pandey, A.K., Gopinath, K.A., Chattacharya, P., Hooda, K.S., Sushil, S.N., Kundu, S., Selvakumar, G. and Gupta, H.S. (2006). Effect of source and rate of organic manures on yield attributes, pod yield and economics of organic garden pea (Pisum sativum hortense) in north west Himalaya. Indian J. Agric. Sci., 76 (4): 230-234.
- Piper, C.S. (1966). Soil and plant analysis. Hans Publisher, Bombay, M.S. (India).
- Praba, R., Singh, A.B., Panwar, N. and Ramana, S. (2008). Effect of organic manures on productivity, nutrient uptake and soil fertility of maize (Zea mays)- Linseed (Linum usitatissimum) cropping system. Indian J. Agric. Sci., 78(4): 351-354.
- Ramesh, P., Panwar, N.R., Singh, A.B. and Ramana, S. (2009). Production potential, nutrient uptake, soil fertility and economics of soybean (Glycine max) based cropping systems under organic, chemical and integrated nutrient management practices. Indian J. Agronomy. 54 (3): 278-283.
- Siddika, M.M.A. and Jeyamangalam, F. (2017). Short term effect of organic manure on the physical and chemical properties of soil. Internat. J. Trend Research & Development 35-37.
- Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Sciences, 25: 259-260.
- Sujatha, K.N., Kavya, G., Manasa, P. and Divya, K. (2016). Assessment of soil properties to improve water holding capacity in soils. Internat. Res. J. Engg. & Technol., 3 (3): 1777-1783.
- Sur, S., Singh, R. and Malhi, S.S. (1998). Influence of simulated erosion on soil properties and maize yield in Northwestern India. Communications in Soil Science & Plant Analysis, 29 (17-18): 2647-2658.
- Tripathi, P., Kashyap, S.D., Shah, S and Pala, N.A. (2017). Effect of organic manure on soil physiochemical properties under fruit based agroforestry system. Indian Forester, 143 (1) : 48-55.
- Xu, C. and Mou, B. (2016). Vermicompost affects soil properties and spinach growth, physiology and nutritional value. Hortscience., 51 (7): 847-855.
- Zhiete (2005). Effect of surface soil removal and nitrogen levels on the performance of soybean (Glycine max Merr.) M.Sc. (Ag.) Thesis, NU: SASRD, Medziphema, Nagaland, India.
- Zhiete, Chauhan, B.S., Singh, A.K. and Dutta, Manoj (2007). Effect of simulated erosion and nitrogen levels on the performance of soybeam (Glycine max Merr.) under foot-hill conditions. Environment & Ecology, 25: 102-106.