
Performance Estimates of cryptographic Hash vis-à-vis
Secret Key and Public/Private Key operations

*Prof. Praveen Gupta
 ** Prof. Swapna K.
Introduction

Cryptography is the lynchpin of data security- besides providing message confidentiality it

facilitates message integrity, authentication and digital signatures. The design of a secure

application is not possible without the use of some encryption and decryption techniques.

An important task for cryptographers is the analysis and recommendation of parameters, crucially

including key size and thus implying key strength, for cryptographic primitives.

Cryptographic hash functions are important tool in cryptography to achieve certain security goals

such as authenticity, digital signature, and digital time stamping and entity authentication. This

paper presents an analysis of the speed and the performance of various security algorithms by

varying key size and file size. Comparative study is based on symmetric encryption algorithm

Data Encryption Standard (DES), asymmetric encryption technique RSA proposed by Rivest,

Shamir, and Adelman and the widely used cryptographic hash function Secure Hash algorithm

(SHA1).

Keywords: cryptography, hashing, RSA, DES, SHA1, performance estimates.

Encryption/Decryption

Symmetric-key cryptography is a mechanism by which the same key is used for

both encrypting and decrypting. This characteristic requires sophisticated

mechanisms to securely distribute the secret-key to both parties.DES is a 64 bit

block symmetric cipher which means that it encrypts data 64 bits at a time.

Public-key on the other hand, introduces another concept involving key pairs:

one for encrypting, the other for decrypting. Given a key pair, data encrypted with

the public-key can only be decrypted with its private key; conversely, data

encrypted with the private-key can only be decrypted with its public key. This

characteristic is used to implement encryption and digital signature.

This concept has following advantages over symmetric-key:

• Simplified key distribution

• Digital Signature

• Long-term encryption

In 1977 Ron Rivest, Adi Shamir, and Leonard Adleman proposed a scheme

using a public key for encrypting messages and a corresponding private key for

decryption- this scheme is commonly referred as RSA- is based on a property of

positive integers. It gets its security from the difficulty of factoring large numbers.

However, it requires keys of at least 1024 bits for good security, which makes it

quite slow. [Hook05]

Cryptography hash

A hash function is a deterministic function that maps an input element from a

larger (possibly infinite) set to an output element in a much smaller set. A

cryptographic hash function, h compress an input x of arbitrary length to a result

with a fixed length i.e. h(x) =h’.

The properties of h are as follows:

1. One-way property: Given a hash value, y, it is computationally infeasible

to find an input x such that h(x) =y.

2. Weak collision resistance: given an input value x1, it is computationally

infeasible to find another input value x2 such that h(x1) =h(x2).

3. Strong collision resistance: it is computationally infeasible to find two input

values x1 and x2 such that h(x1) =h(x2).

Confusion + diffusion: if a single bit in the input string is flipped, then each bit of

the hash value is flipped with probability (approx.) 0.5.

Attack complexity

Weak collision resistance

Assume that the hash value is w bit long. So the total number of possible hash

values is 2w. Now a brute force attempt to obtain x would be to loop through the

following operations

{
Do
{
Generate a random string, x’
Compute h (x’)

}
While (h (x’))! =y)
Return (x’)
}
Strong Collision Resistance
{
// S is the set of (input string, hash value) pairs encountered so far
NotFound=true
While (notFound)
{
Generate a random string, x’
Search for a pair (x, y) in S where x=x’
If (no such pair exists in S)

{
Compute y’=h (x’)
Search for a pair (x, y) in S where y=y’
If (no such pair exists in S)
Insert (x’, y’) into S
Else
NotFound=false
}

}
return (x and x’)
}
This program terminates when the hash of a newly chosen random string collides

with any of the previously computed hash values.

Generic Cryptographic Hash

All known hash functions are based on a compression function with fixed size

input; they process every message block in a similar way. This has been called

an “iterated” hash function. The information is divided into t b-bit blocks X1

through Xt. If the total number of bits is not multiple of the block length b, a

padding procedure has to be specified. The hash function h with compression

function or round function f can then be defined as follows:

H0 = IV

Hi = f(Xi,Hi−1) i = 1, 2, . . . t

h(X) = Ht .

Here Hi are the intermediate variables or chaining variables that have a length of

n bits, and the Xi are b-bit blocks. The result of the hash function is denoted with

h(X) and IV is the abbreviation for Initial Value.

SHA-1

The compression function of SHA-1 uses the block cipher algorithm in feed

forward mode to achieve one-wayness.

Performance Estimates

Private Key operations are generally slower than those with public keys. The

ratio between private and public key operation times grows almost linearly with

key length and longer keys provide an increased level of security at a

performance cost [Manasce03]. Performance estimates of various algorithms are

as follows:

1. The client and server programs for the DES security algorithm with a 64

bit key for different test file sizes was run.

Test file sizes ranged from 1K to 10K, varying in size by 1K

increments.The DES algorithm encryption and decryption times increase

almost linearly as the file size increases. DES encryption times increased

by a factor of 1.017 to 1.09 with each 1K increment in the test file size.

The DES decryption times increased by a factor of 1.03 to 1.1 times with

each 1K increment in the test file size. Like all symmetric key algorithms,

the DES decryption times are 1.2 to 1.3 times faster than encryption times.

 Fig 1.DES with 64 bit key

2. The client and server programs for the RSA security algorithm was run

employing various test files and key sizes.

 Test file sizes included 100 bytes, 1K, 5K, and 10K.

 Key sizes included 1024 bits, 2048 bits, 3072 bits, 4096 bits, and 5120 bits.

Encryption and decryption times on the client and server were measured and

graphs were plotted representing measured times. According to the Figure 2

for every 1024 bits increment in key size, public key encryption times

increased by a factor of 1.16 to 1.26 for the 100 byte file, by a factor of 1.32 to

2.72 for the 1K file, 1.53 to 2.73 for the 5K file, and 1.56 to 2.58 for the 10K

file.

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10

T
i

m
e

i
n

m
s

file size(k bytes)

encryption

decryption

0
2000
4000
6000
8000

10000
12000

0 2000 4000 6000

Ti
m

e
(i

n
m

s)

Key size(bits)

RSA Encryption Time

100K

1K

5k

10k

Fig 2 RSA encryption for varied file size

From fig 3 it can be concluded that for every increment of 1024 bits in key size,

decryption times increased by a factor of 1.94 to 5.98 for the 100 byte file. The

corresponding increase in decryption times is 1.9 to 6.4 for the 1K file, 1.9 to 6.8

for the 5K file, and 1.9 to 7.06 for the 10K file.

 Fig 3. RSA decryption for varied file size

3. The client and server programs for digital signature with SHA1 with

various RSA key sizes were run. Key sizes included 512 bits, 768 bits,

1024 bits, and 2048 bits. A 1MB test file was used. Digital signature

verification times on the client and server were measured and graphed.

The digital signature verification times with SHA1 increased by a factor of

1.09 to 1.23 for each increment of RSA key size.

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000

Ti
m

e
(i

n
m

s)

Key size(bits)

RSA Decryption Time

100K

1K

5k

10k

 Fig 4. Digital signature time of SHA-1 with RSA

Table 1 compares the times to compute the cryptographic hash versus the times

to perform encryption/decryption using 128 bit DES and 1024 bit RSA. The input

file size in each case is 100 KB.

Table 1. Computation times for SHA-1, DES and RSA

SHA-1 DES (128 bit) RSA (1024 bit)

Cryptographic

hash

time(micro

sec)

Encryption

time

(micro

sec)

Decryption

time

(micro

sec)

Encryption

time

(micro

sec)

Decryption

time (micro

sec)

1844 3900 4000 520,000 10,020,000

It is clear that DES is more than twice as expensive compared to SHA-1. RSA is

about three orders of magnitude more expensive compared to DES and SHA-1.

RSA decryption is much more expensive compared to RSA encryption.

Analysis of Test Results

When deciding upon key length in the design or use of a cryptographic algorithm,

one must consider two tradeoffs. Long keys can provide more security but short

keys can provide greater efficiency. Therefore, it is important to determine an

optimal key length by evaluating the likelihood of the key being guessed, versus

0

20

40

60

80

100

512 768 1024 2048

T
i

m
e
(
i
n
m
s
)

RSA key sizes(bits)

the impact of a longer key on the time required to encrypt the plaintext and the

time required by the intended receiver to decrypt the ciphertext [Williams02].

References

 [FIPS 180-1] Secure Hash standard. Federal Information Processing Standard publication
180, 1993.

 [BELL96] M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for message
authentication”/ Lecture Notes in Computer science, 1109, pp. 1-15, 1996. (Advances in
Cryptology-CRYPTO’96)

 [GILB03] Henri Gilbert and Helena Handschuh, “Security Analysis of SHA-256 and Sisters”,
In: Mitsuru Matsui and Robert J. Zuccherato (Eds), “Selected Areas in Cryptography”,
LNCS, vol. 3006, pp.175-193, Springer, 2003.

 [WANGO5] Xiaoyun Wang, Hongbo Yu, “How to break MD5 and other hash functions”,
EUROCRYPT, 2005.

 [MERK89] R.C. Merkle, “ A Certified digital Signature”, Advances in Cryptology- CRYPTO’89
Proceedings, Lecture Notes in Computer Science, Vol. 435,G.Brassard(ed.), Springer-
Verlag, 1989, pp. 218-238.

 [DAMG89] I. Damgard, “ Adesign principle for hash functions”, Advances in Cryptology-
CRYPTO’ 89 Proceedings Lecture Notes in Computer Science, Vol. 435, G. Brassard,
Springer- Verlag, 1989, pp. 416-427.

 [YUVA79] G. Yuval, “How to swindle Rabin”, Cryptologia (3), 1979, pp. 187-190.
 [RIVEE92] R. Rivest, “The MD5 message digest algorithm “, RFC 1321, MIT and RSA Data

Security, Inc, April 19992.

