Open Access Open Access  Restricted Access Subscription Access

Spectral Studies of Indigofera trita L.F.


Affiliations
1 P.G and Research Department of Botany, Vellalar College for Women (Autonomous), Erode – 638 012, Tamil Nadu, India
 

The present investigation was carried out to analyse the chemical nature of Indigofera trita using UV-VIS spectroscopy, Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance (1H and 13C NMR), High Performance Liquid Chromatography and Gas Chromatography Mass Spectroscopy. The results of FT-IR studies confirmed the presence of primary and secondary amine and amides, alcohol, phenols, carboxylic acid, alkanes, alkyne, oximes and aldehyde. GC-MS analysis provides 9 compounds of this four are therapeutically potent. The major identified compounds are Octadecanoic acid (43.67%), 8-Carbethoxy-1,4,5,6,7,8-hexahydropyrrolo[2,3-b]azepin-4-one-3-carboxylic acid (30.5%), 4H-1- Benzopyran-4-one,3,5,7-trihydroxy-2-phenyl (18.6%). HPLC chromatogram of the isolated amorphous compound showed the presence of alkaloid (Choline) with single peak in specific retention time (5.134). The results of the present study indicated I. trita contains medicinally important compounds which are traditionally used for various diseases.

Keywords

GC-MS, HPLC, Indigofera trita, Leguminosae, Octadecanoic Acid, Phytoconstituents
User
Notifications
Font Size


  • Berkes F, Colding J, Folke C. Building resilience for complexity and change. Cambridge, UK: Navigating socialecological systems; 2003. p. 236.
  • Awas T, Demissew S. Ethnobotanical study of medicinal plants in Kafficho people, South-western Ethiopia. Norway: 16th International Conference of Ethiopian Studies; 2009. p. 711–26.
  • Calixto JB. Twenty-five years of research on medicinal plants in Latin America: A personal view. J Ethnopharmacol. 2005; 10(1):131–4. PMid: 16006081. https://doi.org/10.1016/j.jep.2005.06.004
  • Okwu DE. Phytochemicals and vitamin content of indigenous species of south eastern Nigeria. J Sustain Agric Environ. 2004; 6(1):30–7.
  • Kirtikar KR, Basu BD. Indian Medicinal Plants. Dehardun, India: International Book Distributors; 1995. p. 371–2.
  • Larson RA. The antioxidants of higher plants, Phytochem. 1988; 27(4):969–78. https://doi.org/10.1016/0031-9422(88)80254-1
  • Ramamurthy V, Sathiyadevi M. Evaluation of secondary metabolites and determination of antioxidant activity of Indigofera trita. Global J Bio Agr Health Sci. 2015; 4(3):43– 8.
  • Senthilkumar R, Manivannan R, Balasubramanian A, Rajkapoor B. Antioxidant and hepatoprotective activity of ethanol extract of Indigofera trita Linn. On CCl4 induced hepatoxicity in rats. J Pharma Toxi. 2008; 3(5):344–50. https://doi.org/10.3923/jpt.2008.344.350
  • Kumar SR, Rajkapoor B, Perumal P, Dhanasekaran T, AlvinJose M, Jothimanivannan C. Anti-inflammatory and analgesic activities of ethanol extract of Indigofera trita Linn. Pharma. Online. 2009; 1:278–89.
  • Senthilkumar R, Jaykar B, Rajkapoor B. Antitumour activity of Indigofera trita on Erlich ascites carcinoma induced mice. Inter J Cancer Res. 2007; 3(4):180–5. https://doi.org/10.3923/ijcr.2007.180.185
  • 2015 May. p. 32–44. www.plantsjournal.com/vol3 issue 3/
  • Rao S. Ethno botanical study of medicinal plants of Sri Pancha Narasimha Swamy and Sri Matsyagiri Narasimha Swamy. J Med Plan Stu. 2015; 3(3):37–42.
  • Gamble JS, Fisher CEC. Flora of the presidency of Madras. London: Ad Lord and sons; Vol. III, 1956. p. 221.
  • Matthew KM. The Flora of Tamil Nadu Carnatic, Tamil Nadu, The Rapinat herbarium. St. Joseph’s College. 1983; 1:428–9.
  • Rajkumar S, Lalittiha KG, Jebaseelan S, Pandiselvi A, Sandhya G. Isolation of chemical constituents and evaluation of cytotoxic activity of Indigofera aspalathoides. Inter J Bio Phar Res. 2013; 4(1):53–60.
  • Silverstein RM, Clayton G, Morril TC. Spectroscopic identification of organic compounds. New York: John Wiley; 1981.
  • Silverstein RM, Webster FX, Kiemle DJ. Proton NMR spectrometry. Spectrometric identification of organic compounds. USA: John Wiley and Sons; 2005. p. 127–204.
  • Yakatan GJ, Tien JY. Quantitation of pyridostigmine in plasma using high-performance liquid chromatography. J Chromatogr. 1979; 164:399–403. https://doi.org/10.1016/S0378-4347(00)81242-6
  • Jennings W, Shibamoto T. Qualitative analysis of flavour and fragrance volatiles by capillary gas chromatography. New York: Academic Press; 1980.
  • Anonymous. The Wealth of India, Vol.III, New Delhi: CSIR; 1962. p. 414–5.
  • Adindu C, Azubuike E, Iheanyichukwu E, Ikedi J. Phytochemical comparative screening of aqueous extracts of the leaves, stem barks and roots of Hura crepitans (L) using GC- FID. IOSR J Biotech and Biochem. 2016; 2(1):11–8.
  • Satyanarayana U. Chromatography. Biochemistry, Books and allied (P) Ltd, 2005.
  • Bashyam R, Malarvili T, Velavan S. Evaluation of phytoconstituents of Bryonopsis laciniosa fruit by UV-visible spectroscopy and FT-IR analysis. Phcog J. 2015; 7(3):165– 70. https://doi.org/10.5530/pj.2015.3.4
  • Arockiasahayaraj P, Gowri J, Dharmalingama V, Shobanaa R, Angelin Prema A. Phytochemical screening by FTIR spectroscopic analysis of leaf and stem Extracts of Wedelia biflora. Int J Nano Corr Sci Engg. 2015; 2(5):322–34.
  • Manaoharan KP, Huat Benny TK, Yang D. Cycloartane type triterpenoids from the rhizomes of Polygonum bistorta. Phytochemistry. 2005; 66:1168–73. PMid: 16112695. https://doi.org/10.1016/j.phytochem.2005.07.008
  • Escudero J, Lopez C, Rabanal RM, Valverde S. Secondary metabolites from Satureja species. New triterpenoid from Satureja acinos. J Nat Pro. 1985; 48:128–31. https://doi.org/10.1021/np50037a025
  • https://en.m.wikipedia.org/wiki/Choline
  • Zeisal SH, Costa KA. Choline: An essential nutrient for public health. Nutrition Reviews. 2009; 67(11):615–23. PMid: 19906248 PMCid: PMC2782876. https://doi.org/10.1111/ j.1753-4887.2009.00246.x
  • https://www.eurofinsus.com/media/447795/choline-ivc- 2014.pdf
  • Jemimma HL, Arumugasamy K, Nantha Kumar R, Abdul Kaffoor H. GC-MS analysis of root and aerial parts ethanolic extract of Phyllanthus vasukii (Phyllanthaceae). Int J Ayur Herb. Medic. 2017; 7(4):2672–84.
  • Rahman MM, Ahmad SH, Mohamed MT, Rahman Z. Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava and Andrographis paniculata. Sci Worl J. 2014; 10:1–8. PMid: 25250382 PMCid: PMC4163420. https://doi.org/10.1155/2014/635240
  • Rajabudeen E, Saravana Gandhi A, Subramanian PM, Natarajan K. GC-MS analysis of the methanol extract of Indigofera aspalathoides. J Adv Chem Sci. 2015; 1(1):6–8.
  • Abubakar N, Majinda RT. GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia and Pterocarpus angolensis. Medicines. 2016; 3(3):1–9. PMid: 28930113 PMCid: PMC5456228. https://doi.org/10.3390/ medicines3010003
  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B. Effect of Feronia limonia on mosquito larvae. Fitoterapia. 2000; 71:553–5. https://doi.org/10.1016/S0367-326X(00)00164-7
  • Guthrie N, Chambers AF, Moussa M, Carroll KK. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutrition and Cancer. 1996; 26(2):167–81. PMid: 8875554. https://doi.org/10.1080/01635589609514473
  • Guthrie N, Chambers AF, Carroll KK. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Letters. 1997; 112(2):127–33. https://doi.org/10.1016/S0304-3835(96)04557-0
  • Cushnie TP, Lamb AJ. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine. 2006; 13(3):187–91. PMid: 16428027. https://doi.org/10.1016/j. phymed.2004.07.003
  • Cushnie TP, Lamb AJ. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J Ethnopharmacol. 2005; 101(1-3):243–8. PMid: 15985350. https://doi.org/10.1016/j. jep.2005.04.014
  • Afolayan AJ, Meyer JJ, Taylor MB, Erasmus D. Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J Ethnopharmacol. 1997; 56(2):165–9. https://doi.org/10.1016/S0378-8741(97)01514-6
  • Bouker KB, Hilakivi-Clarke L. Genistein: Does it prevent or promote breast cancer? Environ Health Perspect. 2000; 108(8):701–8. PMid: 10964789 PMCid: PMC1638285. https://doi.org/10.1289/ehp.00108701
  • Abubakar MN, Majinda RRT. GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia Schumach and Pterocarpus angolensis DC. Medicines. 2016; (3):1–9. PMid: 28930113 PMCid: PMC5456228. https://doi.org/10.3390/medicines3010003
  • Hussein DM, Al-Juboory SB, Mahmood AAR. Synthesis, antibacterial activity and DFT study of new derivatives derived from oxidation of 7-hydroxy-4-methyl coumarin. Int J Pharm Sci Rev Res. 2017; 46(2):196–206.

Abstract Views: 19

PDF Views: 4




  • Spectral Studies of Indigofera trita L.F.

Abstract Views: 19  |  PDF Views: 4

Authors

J. Aranganayaki
P.G and Research Department of Botany, Vellalar College for Women (Autonomous), Erode – 638 012, Tamil Nadu, India
G. Jayanthi
P.G and Research Department of Botany, Vellalar College for Women (Autonomous), Erode – 638 012, Tamil Nadu, India

Abstract


The present investigation was carried out to analyse the chemical nature of Indigofera trita using UV-VIS spectroscopy, Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance (1H and 13C NMR), High Performance Liquid Chromatography and Gas Chromatography Mass Spectroscopy. The results of FT-IR studies confirmed the presence of primary and secondary amine and amides, alcohol, phenols, carboxylic acid, alkanes, alkyne, oximes and aldehyde. GC-MS analysis provides 9 compounds of this four are therapeutically potent. The major identified compounds are Octadecanoic acid (43.67%), 8-Carbethoxy-1,4,5,6,7,8-hexahydropyrrolo[2,3-b]azepin-4-one-3-carboxylic acid (30.5%), 4H-1- Benzopyran-4-one,3,5,7-trihydroxy-2-phenyl (18.6%). HPLC chromatogram of the isolated amorphous compound showed the presence of alkaloid (Choline) with single peak in specific retention time (5.134). The results of the present study indicated I. trita contains medicinally important compounds which are traditionally used for various diseases.

Keywords


GC-MS, HPLC, Indigofera trita, Leguminosae, Octadecanoic Acid, Phytoconstituents

References





DOI: https://doi.org/10.15613/sijrs%2F2019%2Fv6i1%2F209346