On 3-dimensional Extended Index Matrices

Velichka Traneva¹*, Krassimir Atanassov² and R. Parvathi³

¹Professor Asen Zlatarov University, Professor Yakimov Blvd, Bourgas 8000, Bulgaria; veleka13@gmail.com
¹,²Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 105, Sofia-1113, Bulgaria; krat@bas.bg
³Department of Mathematics, Vellalar College for Women, Erode – 638012, Tamilnadu, India; paarvathis@rediffmail.com

Abstract

An extension of the concept of an Index Matrix (IM), called extended index matrices (EIMs) is introduced. Different operations over EIMs are also introduced.

Keywords: Index Matrix Representation, Operations, Relations

AMS Classification: 11C20

1. Introduction

In 1984, Prof. K.T. Atanassov introduced the concept of index matrix (IM) [1, 2]. During the next 25 years, some of its properties were studied, but in general it was only used as an auxiliary tool for describing of other mathematical objects. In the beginning of the year, Prof. K. T. Atanassov collected his research over IM and published the book [7]. In it, a few extensions of the IMs are defined. Here, a new extension has been introduced that generalizes two previous extensions: Extended IMs (EIMs) and 3-dimensional IMs (3D-IMs). The following are the assumptions and notations used.

(i) \mathcal{I} is fixed set of indices
(ii) \mathbb{R} be the set of the real numbers
(iii) $(K, L \subset \mathcal{I})$ are index sets

2. Basic Definitions

Definition [1, 2, 7]: Consider a fixed set of indices (\mathcal{I}) and a set of real numbers (\mathbb{R}). By IM we mean the object:

$$[K, L, \{f_{k, l}\}] \equiv k_1 \begin{bmatrix} l_1 & l_2 & \ldots & l_n \\ a_{k_1, l_1} & a_{k_1, l_2} & \ldots & a_{k_1, l_n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k_m, l_1} & a_{k_m, l_2} & \ldots & a_{k_m, l_n} \end{bmatrix}$$

where, $K = \{k_1, k_2, \ldots k_m\}$, $L = \{l_1, l_2, \ldots l_n\}$, for $1 \leq i \leq m$ and $1 \leq j \leq n$: $a_{k_i, l_j} \in \mathbb{R}$.

In [5, 7], the IM is extended to the following form: for \mathcal{J}, $\mathcal{J}^n = \{(i_1, i_2, \ldots i_n) | (\forall j : 1 \leq j \leq n)(i_j \in \mathcal{J})\}$ and

$$\mathcal{J}^* = \bigcup_{n \geq 1} \mathcal{J}^n$$

Let \mathcal{X} be a fixed set of objects. In particular, they can be either real numbers, or only the numbers 0 or 1, or logical variables, propositions or predicates, etc. Let the operators $\circ, \ast, \ldots : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}$ be fixed. An EIM with index sets K and $L(K, L \subset \mathcal{J}^*)$ and elements from the set \mathcal{X} is an object of the form:

$$[K, L, \{a_{k, l}\}] \equiv k_1 \begin{bmatrix} l_1 & \cdots & l_j & \cdots & l_n \\ a_{k_1, l_1} & \cdots & a_{k_1, l_j} & \cdots & a_{k_1, l_n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k_m, l_1} & \cdots & a_{k_m, l_j} & \cdots & a_{k_m, l_n} \end{bmatrix}$$

where, $K = \{k_1, k_2, \ldots k_m\}$, $L = \{l_1, l_2, \ldots l_n\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$: $a_{k_i, l_j} \in \mathcal{X}$. In [6,7,9] the concept of a 3D-IM is introduced, as follows. Let \mathcal{J} be a fixed set of indices and

*Author for correspondence
Let X be a fixed set of objects. Following [6], we call “3D-IM” with index sets K, L and $H(K, L, H \subset \mathcal{J})$, the object:

$$\{K, L, H, \{a_{i_j,h_j}\}\}$$

Similarly, the operations conjunction and disjunction can be defined as follows:

$$-x = \langle a, b \rangle$$

$$x \wedge y = \langle \min(a, c), \min(b, d) \rangle$$

$$x \vee y = \langle \max(a, c), \min(b, d) \rangle$$

$$x + y = \langle a + c - a\cdot c, b \cdot d \rangle$$

$$x \cdot y = \langle a \cdot c, b + d - b \cdot d \rangle$$

$$x \otimes y = \left\langle \frac{a + c}{2}, \frac{b + d}{2} \right\rangle$$

In [4], definitions of 138 implication operations and 34 negation operation are given – the simplest one is given above.

3. Definition of a 3D-Extended Index Matrix (3D-EIM)

Let X be a fixed set of some objects (real numbers, the number 0 or 1, logical variables, propositions or predicates, IFPs, etc.). Now, define a “3D-Extended Index Matrix” (3D-EIM) with index sets K, L and $H(K, L, H \subset \mathcal{J})$ and elements from the set X:

$$\{K, L, H, \{a_{i_j,h_j}\}\}$$

where, $K = \{k_1, k_2, \ldots, k_m\}$, $L = \{l_1, l_2, \ldots, l_n\}$, $H = \{h_1, h_2, \ldots, h_f\}$ for $1 \leq i \leq m$, and $1 \leq j \leq n$, $1 \leq g \leq f$: $a_{i_j,h_j} \in X$. The intuitionistic fuzzy pair (IFP) is an object with the form $\langle a, b \rangle$, where, $a, b \in [0,1]$ and $a + b \leq 1$ that is used as an evaluation of some object or process. Where a and b denote degrees of membership (validity or correctness) and non-membership (non-validity or non-correctness) respectively. Consider two IFPs $x = \langle a, b \rangle$ and $y = \langle b, d \rangle$. The following relations have been defined in [8]:

- $x < y$ iff $a < c$ and $b > d$
- $x \leq y$ iff $a < c$ and $b \geq d$
- $x = y$ iff $a = c$ and $b = d$
- $x \geq y$ iff $a \geq c$ and $b \leq d$
- $x > y$ iff $a > c$ and $b < d$

4. Operations over 3D-EIMs

Let $3D - EIM_{K}$ be the set of all 3D-EIMs with elements being real numbers, $3D - EIM_{0,1}$ be the set of all ($0, 1$)-3D-EIMs with elements being 0 or 1, $3D - IMP$ be the set of all 3D-EIMs with elements – predicates and $3D - EIM_{IFP}$ be the set of all 3D-EIMs with elements – IFPs.
Let X, Y, Z, U be fixed sets. Let the operations “$*$” and “$°$” be defined so that:

$*: X \times Y \rightarrow Z$ and $°: Z \times Z \rightarrow U$. Let the index set \mathcal{J} be given. We will define some operations over the 3D-EIMs A and B.

4.1 Transposition

As discussed in [5, 7], there are 2 ($=2!$) EIMs, related to this operation: the standard EIM and its transposed EIM. Now, for 3D-EIMs, there are 6 ($=3!$) cases: the standard 3D-IM and five different transposed 3D-IMs. By analogy with [7], it is shown that the following are the geometrical and analytical forms of the separate transposed 3D-EIMs,

- **[1,2,3]-transposition (identity)**

$$
\begin{pmatrix}
H_f \\
\mathcal{K} \\
\mathcal{L}
\end{pmatrix}^{[1,2,3]} = \begin{pmatrix}
H_f \\
\mathcal{K} \\
\mathcal{L}
\end{pmatrix}
$$

$$[K, L, H, \{a_{k,j,l}\}]^{[1,2,3]} = [K, L, H, \{a_{k,j,l}\}]$$

- **[1,3,2]-transposition**

$$
\begin{pmatrix}
H_f \\
\mathcal{K} \\
\mathcal{L}
\end{pmatrix}^{[1,3,2]} = \begin{pmatrix}
\mathcal{L} \\
\mathcal{K} \\
H_f
\end{pmatrix}
$$

$$[K, L, H, \{a_{k,j,l}\}]^{[1,3,2]} = [L, K, H, \{a_{j,k,l}\}]$$

- **[2,1,3]-transposition**

$$
\begin{pmatrix}
H_f \\
\mathcal{K} \\
\mathcal{L}
\end{pmatrix}^{[2,1,3]} = \begin{pmatrix}
\mathcal{L} \\
\mathcal{K} \\
H_f
\end{pmatrix}
$$

$$[K, L, H, \{a_{k,j,l}\}]^{[2,1,3]} = [L, K, H, \{a_{j,k,l}\}]$$

- **[2,3,1]-transposition**

$$
\begin{pmatrix}
H_f \\
\mathcal{K} \\
\mathcal{L}
\end{pmatrix}^{[2,3,1]} = \begin{pmatrix}
\mathcal{K} \\
\mathcal{L} \\
H_f
\end{pmatrix}
$$

$$[K, L, H, \{a_{k,j,l}\}]^{[2,3,1]} = [L, K, H, \{a_{j,k,l}\}]$$

- **[3,1,2]-transposition**

$$
\begin{pmatrix}
H_f \\
\mathcal{K} \\
\mathcal{L}
\end{pmatrix}^{[3,1,2]} = \begin{pmatrix}
\mathcal{K} \\
\mathcal{L} \\
H_f
\end{pmatrix}
$$

$$[K, L, H, \{a_{k,j,l}\}]^{[3,1,2]} = [H, K, L, \{a_{j,k,l}\}]$$

4.2 Addition [3]

$$A \oplus_B = [K \cup P, L \cup Q, H \cup R, \{C_{t,v,x,y}\}]$$

Where, here and below F means “false” and

$$
\circ \in \{+, \times, \max, \min\}, \quad \text{if } A \in 3D - EIM_{R},
$$

$$\{\times, \max, \min\}, \quad \text{if } A \in 3D - EIM_{[0,1]},
$$

$$\{\lor, \land, \rightarrow, \equiv\}, \quad \text{if } A \in 3D - EIM_{P}, \quad \text{or } A \in 3D - EIM_{R}.
$$

4.3 Termwise Multiplication [3]

$$A \otimes_{c} B = [K \cap P, L \cap Q, H \cap R, \{C_{t,v,x,y}\}]$$

Where, $\{C_{t,v,x,y}\} = a_{k,j,l} \circ b_{p,q,r,s}$ for $t = k$, $p, v = l$, $q, x = j$, $y = s$.

4.4 Multiplication [3]

This operation is related to the operation “transposition”. There are six different operations “multiplication”. The first (standard) multiplication is

$$A \odot_{c} B = A \odot_{c} \left[K \cup Q, L \cup P, H \cup R, \{C_{t,v,x,y}\} \right]$$
where

\[a_{k_i, l_j, h_y} = \begin{cases}
0 & \text{if } t_u = k_i \in K, v_w = l_j \in L - Q \text{ and } x_y = h_y \in H \\
1 & \text{if } t_u = k_i \in K - P - Q, v_w = l_j \in L \text{ and } x_y = h_y \in H \\
\text{if } t_u = k_i \in K - P, v_w = q_e \in Q - L - K \text{ and } x_y = e_j \in R \\
\text{if } t_u = k_i \in P, v_w = q_e \in Q - L - K \text{ and } x_y = e_j \in R
\end{cases} \]

\[|C_{k_i, l_j, h_y}| = \begin{cases}
(\ast, \ast), \quad \text{if } A \in 3D - EIM_{g} \\
([\ast, \ast], \text{max}, \text{min}), \quad \text{if } A \in 3D - EIM_{p} \\
([\ast, \ast], \text{min}, \text{max}), \quad \text{if } A \in 3D - EIM_{pp}
\end{cases} \]

The geometrical interpretation of this operation is

Let \([x, y, z] \) be a permutation of triple \([1,2,3] \). Operation \([x, y, z] \)-multiplication is defined by:

\[A \odot B = A \odot B^{[x, y, z]} \]

For operations “addition”, “termwise multiplication” and “multiplication”, in the case of \(3D - EIM_{g} \), \(X = Y = Z = R \); in the case of \((0, 1) - 3D EIM_{p} \), \(X = Y = Z = [\ast, \infty) \) in the case of \(3D - IM_{pp} \), \(X = Y = Z \), is a set of logical variables, propositions or predicates; in the case of \(3D - IM_{pp} \), \(X = Y = Z \) is a set of IFPs.

4.5 Structural Subtraction [3]

\(A \odot B = [K - P, L - Q, H - R, |C_{k_i, l_j, h_y}|] \),

where \(-\) is the set-theoretic difference operation and \(C_{k_i, l_j, h_y} = a_{k_i, l_j, h_y} \) for \(t_u = k_i \in K - P, v_w = l_j \in L - Q \) and \(x_y = h_y \in H - R \)

4.6 Multiplication with a Constant

\(a.A = [K, L, H, a_{k_i, l_j, h_y}] \)

where, \(a \) is a constant. If \(X = R \); then \(a \in R \); if \(X = (0, 1) \) then \(a \in (0, 1) \); if \(X \) is a set of logical variables, propositions, predicates, or IFPs, then \(a \) has sense only when it is some operation “negation”. In the latest case, the operation has the form

\[\neg A = [K, L, H, \{\neg a_{k_i, l_j, h_y}\}] \]

4.7 Termwise Subtraction [3]

\(A - (_.) B = A \odot (_.) B = [K \cap P, L \cap Q, H \cap R, |C_{k_i, l_j, h_y}|] \)

where

\[a_{k_i, l_j, h_y} = \begin{cases}
0 & \text{if } t_u = k_i \in K - P, v_w = l_j \in L - Q \text{ and } x_y = h_y \in H - R \\
1 & \text{if } t_u = k_i \in K \text{ and } v_w = l_j \in L - Q \text{ and } x_y = h_y \in H \\
\text{if } t_u = k_i \in K \cap P, v_w = l_j \in L \text{ and } x_y = h_y \in H \\
\text{if } t_u = k_i \in K - P \cap Q, v_w = l_j \in L \text{ and } x_y = h_y \in H \\
\text{if } t_u = k_i \in K \cap P \text{ and } v_w = l_j \in L - Q \text{ and } x_y = h_y \in H
\end{cases} \]

5. Operation “Reduction” over 3D-EIM

In analogous to [7], the operations “reduction”, “projection” and “substitution” over an 3D-EIM, have been introduced. Firstly, we introduce operations \((k, l, l) \rightarrow (l, l, h) \rightarrow (l, l, h)\) – reduction of a given 3D-EIM \(A = [K, L, H, |C_{k_i, l_j, h_y}|] \):

\[A_{(k, l, l)} = [K - \{k\}, L, H, |C_{k_i, l_j, h_y}|] \]

where

\[C_{k_i, l_j, h_y} = a_{k_i, l_j, h_y} \] for \(t_u = k_i \in K \cap P, v_w = l_j \in L \text{ and } x_y = h_y \in H \)

\[A_{(l, l, h)} = [K, L - \{l\}, H, |C_{k_i, l_j, h_y}|] \]

where

\[C_{k_i, l_j, h_y} = a_{k_i, l_j, h_y} \] for \(t_u = k_i \in K - \{k\}, v_w = l_j \in L \text{ and } x_y = h_y \in H \)

Vol 1 (2) | July–December 2014 | www.indjst.org

ScieXplore: International Journal of Research in Science | 67
and \(A_{(k,l,h)} = [K, L, H - \{h\}, \{C_{x,y},x,y,} \} \)

where,
\[
C_{x,y,x,y} = a_{t_u, k, v_u, l_v, j} \quad \text{for } t_u = k_i \in K, v_u = l_j \in L \text{ and } x_y = h_z \in H - \{h\}
\]

Secondly, define
\[
A_{(k,l,h)} = (\left(A_{(k,l,h)}\right)_{(i,k,l)})_{i \leq k, l}
\]

i.e.,
\[
A_{(k,l,h)} = [K - \{k\}, L - \{l\}, H - \{h\}, \{C_{x,y,x,y} \}]
\]

where,
\[
C_{x,y,x,y} = a_{t_u, k, v_u, l_v, j} \quad \text{for } t_u = k_i \in K - \{k\}, v_u = l_j \in L - \{l\} \text{ and } x_y = h_z \in H - \{h\}
\]

For every 3D-EIM \(A \) and for every \(k_i, k_j \in K, l_j \in L, h_j \in H \)
\[
\left(A_{(k,l,h)} \right)_{(i,k,l)} = \left(A_{(k,l,h)} \right)_{(j,k,l)}
\]

Thirdly, let \(\{p_1, p_2, ..., p_n\} \subseteq K, Q = \{q_1, q_2, ..., q_n\} \subseteq L \) and \(R = \{r_1, r_2, ..., r_n\} \subseteq H, \) \(p \in K, l \in L, h \in H, \) Now, define the following four operations:
\[
A_{(p,l,h)} = \left(\left(A_{(p,1, h)} \right)_{(1,p, l)} \right)_{(p,l,h)}
\]
\[
A_{(k,Q,H)} = \left(\left(A_{(k,1, h)} \right)_{(1,k, l)} \right)_{(1,k, l, h)}
\]
\[
A_{(k,q,H)} = \left(\left(A_{(k,1, h)} \right)_{(1,k, l)} \right)_{(1,k, l, h)}
\]
\[
A_{(P,Q,H)} = \left(\left(A_{(p,q,H)} \right)_{(p,q,H)} \right)_{(p,q,H)}
\]

Obviously,
\[
A_{(k,l,h)} = I_{\emptyset}, \quad A_{(\emptyset,\emptyset,\emptyset)} = A
\]

6. Operation “Projection” over an EIM

Let \(P \subseteq K, Q \subseteq L, R \subseteq H. \) Then,
\[
p'_{P,Q,R}A = [P, Q, R, \{a_{k,l,h} \}]
\]

where
\[
(\forall k_i \in P) (\forall l_j \in Q) (\forall h_k \in R) (b_{k,l,h} = a_{k,l,h})
\]

7. Operation “Substitution” over 3D-EIM

Let the 3D-EIM \(A = [K, L, H, \{a_{k,l,h} \}] \) be given. First, local substitution over the EIM is defined for the pairs of indices \((p, k) \) and \((q, l) \) and \((r, h) \) respectively, by
\[
\left[\begin{array}{c}
\frac{p}{k} \; ; \; \frac{q}{l} \; ; \; \frac{r}{h}
\end{array} \right] A = \left[\begin{array}{c}
(K - \{k\}) \cup \{p\}, L, H, \{a_{p,q} \}
\end{array} \right]
\]

Second,
\[
\left[\begin{array}{c}
\frac{p}{k} \; ; \; \frac{q}{l} \; ; \; \frac{r}{h}
\end{array} \right] A = \left[\begin{array}{c}
(K - \{k\}) \cup \{q\}, L, H, \{a_{p,q} \}
\end{array} \right]
\]

Let the sets of indices \(P = \{p_1, p_2, ..., p_m\}, Q = \{q_1, q_2, ..., q_n\} \) and \(R = \{r_1, r_2, ..., r_s\} \) be given, where \(m = \text{card}(K), n = \text{card}(L), s = \text{card}(H) \). Third, for them we define sequentially:
\[
\left[\begin{array}{c}
\frac{p_1}{k_1} \; ; \; \frac{p_2}{k_2} \; ; \; \cdots \; ; \; \frac{p_m}{k_m}
\end{array} \right] A,
\]
\[
\left[\begin{array}{c}
\frac{q_1}{l_1} \; ; \; \frac{q_2}{l_2} \; ; \; \cdots \; ; \; \frac{q_n}{l_n}
\end{array} \right] A,
\]
\[
\begin{bmatrix}
\bot; \bot; \frac{R}{H} \\
\frac{P}{Q}; \frac{R}{L}; \frac{H}{H}
\end{bmatrix} A = \begin{bmatrix}
\bot; \bot; \frac{r_1, r_2, \ldots, r_i}{h_1, h_2, \ldots, h_j}
\end{bmatrix} A,
\]
\[
\begin{bmatrix}
P; Q; R \\
K; L; H
\end{bmatrix} A = \begin{bmatrix}
\frac{p_1, p_2, \ldots, p_m}{k_1, k_2, \ldots, k_m}, \frac{q_1, q_2, \ldots, q_n}{l_1, l_2, \ldots, l_n}, \frac{r_1, r_2, \ldots, r_s}{h_1, h_2, \ldots, h_j}
\end{bmatrix}
\]
\[
A = [P, Q, R, \{a_{k,l,h}\}]
\]

8. References