Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Zeros of Dedekind Zeta Functions and Holomorphy of Artin L-Functions


Affiliations
1 Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
     

   Subscribe/Renew Journal


For any Galois extension K/k of number fields, we show that every Artin L-function for Gal(K/k) is holomorphic at s = s0 ≠= 1 whenever the quotient ζK (s)/ζk (s) of Dedekind zeta functions has a zero of order at most max{2, p2 − 2} at s = s0 (here p2 stands for the second smallest prime divisor of [K : k]). This result gives a refinement of the previous work of Foote and V. K. Murty.
User
Subscription Login to verify subscription
Notifications
Font Size

  • E. Artin, Uber eine neue Art von L-Reihen, Hamb. Abh. 3 (1924) 89–108. (Cf. Collected Papers, 105-124, Addison-Wesley, Reading, 1965.)
  • R. Brauer, On the zeta functions of algebraic number fields, Amer. J. Math., 69 (1947) 243–250.
  • R. Brauer, On Artin’s L-series with general group characters, Ann. of Math., 48 (1947) 502–514.
  • C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, John Wiley and Sons (1966).
  • W. Feit, Characters of finite groups, Benjamin, New York (1967).
  • R. Foote, Non-monomial characters and Artin’s conjecture, Trans. Amer. Math. Soc., 321 (1990) 261–272.
  • R. Foote and V. K. Murty, Zeros and poles of Artin L-series, Math. Proc. Cambridge Philos. Soc., 105 no. 1, (1989) 5–11.
  • R. Foote and D. Wales, Zeros of order 2 of Dedekind zeta-functions and Artin’s conjecture, J. Algebra, 131 (1990) 226–257.
  • I. M. Isaacs, Character theory of finite groups, Dover, New York (1994).
  • I. M. Isaacs, Finite group theory, Amer. Math. Soc. (2008).
  • C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (I), Inventiones Mathematicae, 178(3) (2009) 485–504.
  • R. P. Langlands, Base change for GL(2), Annals of Math. Studies 96, Princeton Univ. Press (1980).
  • K. Martin, A symplectic case of Artin’s conjecture, Math. Res. Lett., 10 no. 4, (2003) 483–492.
  • M. R. Murty and A. Raghuram, Variations on a conjecture of Dedekind, Journal of the Ramanujan Math. Society, 15 no. 2, (2000) 75–95.
  • D. Ramakrishnan, Modularity of solvable Artin representations of GO(4)-type, Int. Math. Res. Not., no. 1, (2002) 1–54.
  • W. R. Scott, Group theory, Dover, New York (1987).
  • J. Tunnell, Artin’s conjecture for representations of octahedral type, Bull. Amer. Math. Soc. N. S., 5(2) (1981) 173–175.
  • K. Uchida, On Artin’s L-functions, Tohoku Math. J., 27 (1975) 75–81.
  • R. W. van der Waall, On a conjecture of Dedekind on zeta functions, Indag. Math., 37 (1975) 83–86.
  • M. Weinstein (ed.), Between Nilpotent and Solvable, Polygonal Publishing House (1982).
  • P.-J. Wong, Character theory and Artin L-functions, Ph.D. Thesis, Queen’s University (2017).
  • P.-J. Wong, Applications of group theory to conjectures of Artin and Langlands, International Journal of Number Theory, 14 (2018) 881–898.

Abstract Views: 211

PDF Views: 0




  • Zeros of Dedekind Zeta Functions and Holomorphy of Artin L-Functions

Abstract Views: 211  |  PDF Views: 0

Authors

Peng-Jie Wong
Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract


For any Galois extension K/k of number fields, we show that every Artin L-function for Gal(K/k) is holomorphic at s = s0 ≠= 1 whenever the quotient ζK (s)/ζk (s) of Dedekind zeta functions has a zero of order at most max{2, p2 − 2} at s = s0 (here p2 stands for the second smallest prime divisor of [K : k]). This result gives a refinement of the previous work of Foote and V. K. Murty.

References