Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

mH(G)-Property and Congruence of Galois Representations


Affiliations
1 School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
     

   Subscribe/Renew Journal


In this paper, we study the Selmer groups of two congruent Galois representations over an admissible p-adic Lie extension. We will show that under appropriate congruence condition, if the dual Selmer group of one satisfies the mH(G)-property, so will the other. In the event that the mH(G)-property holds, and assuming certain further hypothesis on the decomposition of primes in the p-adic Lie extension, we compare the ranks of the π-free quotient of the two dual Selmer groups. We then apply our results to compare the characteristic elements attached to the Selmer groups. We also study the variation of the ranks of the π-free quotient of the dual Selmer groups of specialization of a big Galois representation. We emphasis that our results do not assume the vanishing of the μ-invariant.
User
Subscription Login to verify subscription
Notifications
Font Size

  • S. Ahmed and S. Shekhar, λ-invariants of Selmer groups of elliptic curves with positive μ-invariant, J. Ramanujan Math. Soc., 30(1) (2015) 115–133.
  • K. Ardakov and K. A. Brown, Primeness, semiprimeness and localisation in Iwasawa algebras, Trans. Amer. Math. Soc., 359(4) (2007) 1499–1515.
  • K. Ardakov and S.Wadsley, Characteristic elements for p-torsion Iwasawa modules, J. Algebraic Geom., 15 (2006) 339–377.
  • R. Barman and A. Saikia, A note on Iwasawa μ-invariants of elliptic curves, Bull. Braz. Math. Soc., New Series, 41(3) (2010) 399–407.
  • P. Barth, Iwasawa theory for one-parameter families of motives, Int. J. Number Theory, 9(2) (2013) 257–319.
  • D. Burns and O. Venjakob, On descent theory and main conjectures in non-commutative Iwasawa theory, J. Inst. Math. Jussieu, 10(1) (2011) 59–118.
  • A. Chandrakant Sharma, Iwasawa invariants for the False-Tate extension and congruences between modular forms, J. Number Theory, 129 (2009) 1893–1911.
  • J. Coates, Fragments of the GL2 Iwasawa theory of elliptic curves without complex multiplication, in Arithmetic Theory of Elliptic Curves, ed. C. Viola, Lecture Notes in Math., 1716 (Springer, Berlin, 1999), 1–50.
  • J. Coates, T. Fukaya, K. Kato, R. Sujatha and O. Venjakob, The GL2 main conjecture for elliptic curves without complex multiplication, Publ. Math. IHES, 101 (2005) 163–208.
  • J. Coates, P. Schneider and R. Sujatha, Links between cyclotomic and GL2 Iwasawa theory. Kazuya Kato’s fiftieth birthday. Doc. Math. (2003), Extra Vol., 187–215 (electronic).
  • J. Coates and R. Sujatha, Fine selmer groups of elliptic curves over p-adic Lie extensions, Math. Ann., 331(4) (2005) 809–839.
  • J. Coates and R. Sujatha, On the mH (G)-conjecture. Non-abelian fundamental groups and Iwasawa theory, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 393 (2012), 132–161.
  • J. Dixon, M. P. F. Du Sautoy, A.Mann and D. Segal,Analytic Pro-p Groups, 2nd edn., Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge, UK, 38 (1999).
  • M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families, Invent. Math., 163 (2006) 523–580.
  • T. Fukaya and K. Kato, A formulation of conjectures on p-adic zeta functions in noncommutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society, Vol. XII, 1–85, Amer. Math. Soc. Transl. Ser., 2 Vol. 219, Amer. Math. Soc., Providence, RI (2006).
  • K. R. Goodearl and R. B. Warfield, An introduction to non-commutative Noetherian rings, London Math. Soc. Stud., Texts 61, Cambridge University Press (2004).
  • R. Greenberg, Iwasawa theory for p-adic representations, in Algebraic Number Theory–in honor of K. Iwasawa, ed. J. Coates, R. Greenberg, B.Mazur and I. Satake, Adv. Std. in Pure Math., 17 (1989) 97–137.
  • R. Greenberg, Iwasawa theory for p-adic deformations of motives, Proc. Sympos. Pure Math., 55 (Part 2) (1994) 193–223.
  • R. Greenberg and V. Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math., 142 (2000) 17–63.
  • Y. Hachimori, Iwasawa λ-invariants and congruence of Galois representations, J. Ramanujan Math. Soc., 26(2) (2011) 203–217.
  • Y. Hachimori and T. Ochiai, Notes on non-commutative Iwasawa theory, Asian J. Math., 14(1) (2010) 11–17.
  • Y. Hachimori and O. Venjakob, Completely faithful Selmer groups over Kummer extensions, Doc. Math. (2003) 443–478, Extra Volume: Kazuya Kato’s fiftieth birthday.
  • S. Howson, Euler characteristic as invariants of Iwasawa modules, Proc. London Math. Soc., 85(3) (2002) 634–658.
  • S. Howson, Structure of central torsion Iwasawa modules, Bull. Soc. Math. France, 130(4) (2002) 507–535.
  • S. Jha, Fine Selmer group of Hida deformations over non-commutative p-adic Lie extensions, Asian J. Math., 16(2) (2012) 353–366.
  • M. Kakde, The main conjecture of Iwasawa theory for totally real fields, Invent. Math., 193(3) (2013) 539–626.
  • K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, in: Cohomologies p-adiques et applications arithmetiques. III., Asterisque, 295 (2004), ix, 117–290.
  • T. Y. Lam, Lectures on Modules and Rings, Grad. Texts inMath. 189, Springer, 1999.
  • M. Lazard, Groups analytiques p-adiques, Publ. Math. IHES, 26 (1965) 389–603.
  • M. F. Lim, Poitou-Tate duality over extensions of global fields, J. Number Theory, 132 (2012) 2636–2672.
  • M. F. Lim, A remark on the mH(G)-conjecture and Akashi series, Int. J. Number Theory, 11(1) (2015) 269–297.
  • M. F. Lim, Akashi series, characteristic elements and congruence of Galois representations, Int. J. Number Theory, 12(3) (2016) 593–613.
  • M. F. Lim, Notes on the fine Selmer groups, Asian J. Math., 21(2) (2017) 337–362.
  • M. F. Lim, Comparing the π-primary submodules of the dual Selmer groups, Asian J. Math., 21(6) (2017) 1153–1182.
  • M. F. Lim and R. Sharifi, Nekovar duality over p-adic Lie extensions of global fields, Doc. Math., 18 (2013) 621–678.
  • B. Mazur, Rational points of abelian varieties in towers of number fields, Invent. Math., 18 (1972) 183–266.
  • J. Nekovar, Selmer Complexes, Asterisque, 310 (2006).
  • A. Neumann, Completed group algebras without zero divisors, Arch. Math., 51(6) (1988) 496–499.
  • Y. Ochi, A note on Selmer groups of abelian varieties over the trivializing extensions, Proc. Amer. Math. Soc., 134(1) (2006) 31–37.
  • Y. Ochi and O. Venjakob, On the structure of Selmer groups over p-adic Lie extensions, J. Algebraic Geom., 11(3) (2002) 547–580.
  • Y. Ochi and O. Venjakob, On the ranks of Iwasawa modules over p-adic Lie extensions, Math. Proc. Cambridge Philos. Soc., 135 (2003) no. 1, 25–43.
  • T. Ochiai, On the two-variable Iwasawa main conjecture, Comp. Math., 142 (2006) 1157–1200.
  • L. Ribes and P. Zalesskii, Profinite Groups, Second edition, Ergeb. Math. Grenzgeb., Springer, 40 (2010).
  • K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math., 103 (1991) 25–68.
  • J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology, 3 (1965) 413–420.
  • S. Shekhar, Euler characteristics of #923;-adic forms over Kummer extensions, Int. J. Number Theory, 10(2) (2014) 401–420.
  • S. Shekhar and R. Sujatha, On the structure of Selmer groups of Λ-adic deformations over p-adic Lie extensions, Doc. Math., 17 (2012) 573–606.
  • S. Shekhar and R. Sujatha, Euler characteristic and congruences of elliptic curves, Munster J. of Math., 7 (2014) 327–343.
  • R. Sujatha, Iwasawa theory and modular forms, Pure Appl. Math. Q., 2(2) (2006) 519–538.
  • O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc., 4(3) (2002) 271–311.
  • O. Venjakob, A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math., 559 (2003) 153–191.
  • O. Venjakob, From the Birch and Swinnerton-Dyer conjecture to noncommutative Iwasawa theory via the equivariant Tamagawa number conjecture-A survey, in: L-Functions and Galois Representations, 333–380, London Math. Soc. Lecture Note Ser., 320, Cambridge Univ. Press, Cambridge (2007).
  • T. Weston, Iwasawa invariants of Galois deformations, Manuscripta Math., 118(2) (2005) 161–180.
  • J. Wilson, Profinite groups, London Math. Soc. Monogr. Ser., The Clarendon Press, Oxford University Press, 19 (1998).

Abstract Views: 180

PDF Views: 1




  • mH(G)-Property and Congruence of Galois Representations

Abstract Views: 180  |  PDF Views: 1

Authors

Meng Fai Lim
School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China

Abstract


In this paper, we study the Selmer groups of two congruent Galois representations over an admissible p-adic Lie extension. We will show that under appropriate congruence condition, if the dual Selmer group of one satisfies the mH(G)-property, so will the other. In the event that the mH(G)-property holds, and assuming certain further hypothesis on the decomposition of primes in the p-adic Lie extension, we compare the ranks of the π-free quotient of the two dual Selmer groups. We then apply our results to compare the characteristic elements attached to the Selmer groups. We also study the variation of the ranks of the π-free quotient of the dual Selmer groups of specialization of a big Galois representation. We emphasis that our results do not assume the vanishing of the μ-invariant.

References