Open Access Open Access  Restricted Access Subscription Access

Investigations on Structural and Optical Properties of Hydrothermally Synthesized Zn2SnO4 Nanoparticles


Affiliations
1 Department of Physics, Loyola College, Chennai 600 034, India
2 Department of Physics, Velammal Engineering College, Chennai 600 066, India
 

Ternary oxide Zn2SnO4 has emerged as a promising material due to its tunable work function, band gap energy, and electric resistivity by simply varying the composition of the material. Zinc stannate nanoparticles were synthesized by green hydrothermal growth technique at 200°C for the reaction time of 24 h using stannic chloride pentahydrate (SnCl4 ⋅5H2O) and zinc chloride (ZnCl2) as precursors maintained at pH value of 8. X-ray diffraction analysis confirmed the phase purity and high crystalline nature of the synthesized sample. The estimated crystallite size was about 12.3 nm corresponding to the most prominent plane (311) using Scherrer equation. Morphology of the sample was characterized by SEM analysis, which confirmed the presence of small size nanoparticles. The optical property of synthesized sample was studied by using UV-visible and PL spectroscopy analysis. The derived optical band gap of 3.94 eV was found to be blue shifted as compared to bulk Zn2SnO4 (3.6 eV), which should be  attributed to the quantum size effects. Room temperature photoluminescence spectrum showed emission bands at 397nm and 468 nm.
User
Notifications
Font Size

Abstract Views: 62

PDF Views: 0




  • Investigations on Structural and Optical Properties of Hydrothermally Synthesized Zn2SnO4 Nanoparticles

Abstract Views: 62  |  PDF Views: 0

Authors

L. Allwin Joseph
Department of Physics, Loyola College, Chennai 600 034, India
J. Emima Jeronsia
Department of Physics, Loyola College, Chennai 600 034, India
M. Mary Jaculine
Department of Physics, Velammal Engineering College, Chennai 600 066, India
S. Jerome Das
Department of Physics, Loyola College, Chennai 600 034, India

Abstract


Ternary oxide Zn2SnO4 has emerged as a promising material due to its tunable work function, band gap energy, and electric resistivity by simply varying the composition of the material. Zinc stannate nanoparticles were synthesized by green hydrothermal growth technique at 200°C for the reaction time of 24 h using stannic chloride pentahydrate (SnCl4 ⋅5H2O) and zinc chloride (ZnCl2) as precursors maintained at pH value of 8. X-ray diffraction analysis confirmed the phase purity and high crystalline nature of the synthesized sample. The estimated crystallite size was about 12.3 nm corresponding to the most prominent plane (311) using Scherrer equation. Morphology of the sample was characterized by SEM analysis, which confirmed the presence of small size nanoparticles. The optical property of synthesized sample was studied by using UV-visible and PL spectroscopy analysis. The derived optical band gap of 3.94 eV was found to be blue shifted as compared to bulk Zn2SnO4 (3.6 eV), which should be  attributed to the quantum size effects. Room temperature photoluminescence spectrum showed emission bands at 397nm and 468 nm.